Improving GANs with A Dynamic Discriminator
- URL: http://arxiv.org/abs/2209.09897v1
- Date: Tue, 20 Sep 2022 17:57:33 GMT
- Title: Improving GANs with A Dynamic Discriminator
- Authors: Ceyuan Yang, Yujun Shen, Yinghao Xu, Deli Zhao, Bo Dai, Bolei Zhou
- Abstract summary: We argue that a discriminator with an on-the-fly adjustment on its capacity can better accommodate such a time-varying task.
A comprehensive empirical study confirms that the proposed training strategy, termed as DynamicD, improves the synthesis performance without incurring any additional cost or training objectives.
- Score: 106.54552336711997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discriminator plays a vital role in training generative adversarial networks
(GANs) via distinguishing real and synthesized samples. While the real data
distribution remains the same, the synthesis distribution keeps varying because
of the evolving generator, and thus effects a corresponding change to the
bi-classification task for the discriminator. We argue that a discriminator
with an on-the-fly adjustment on its capacity can better accommodate such a
time-varying task. A comprehensive empirical study confirms that the proposed
training strategy, termed as DynamicD, improves the synthesis performance
without incurring any additional computation cost or training objectives. Two
capacity adjusting schemes are developed for training GANs under different data
regimes: i) given a sufficient amount of training data, the discriminator
benefits from a progressively increased learning capacity, and ii) when the
training data is limited, gradually decreasing the layer width mitigates the
over-fitting issue of the discriminator. Experiments on both 2D and 3D-aware
image synthesis tasks conducted on a range of datasets substantiate the
generalizability of our DynamicD as well as its substantial improvement over
the baselines. Furthermore, DynamicD is synergistic to other
discriminator-improving approaches (including data augmentation, regularizers,
and pre-training), and brings continuous performance gain when combined for
learning GANs.
Related papers
- Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification [3.0398616939692777]
Techniques like adversarial learning, contrastive learning, diffusion denoising learning, and ordinary reconstruction learning have become standard.
The study aims to elucidate the advantages of pre-training techniques and fine-tuning strategies to enhance the learning process of neural networks.
arXiv Detail & Related papers (2024-05-29T15:44:51Z) - Data Augmentation for Traffic Classification [54.92823760790628]
Data Augmentation (DA) is a technique widely adopted in Computer Vision (CV) and Natural Language Processing (NLP) tasks.
DA has struggled to gain traction in networking contexts, particularly in Traffic Classification (TC) tasks.
arXiv Detail & Related papers (2024-01-19T15:25:09Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - Generalizable Low-Resource Activity Recognition with Diverse and
Discriminative Representation Learning [24.36351102003414]
Human activity recognition (HAR) is a time series classification task that focuses on identifying the motion patterns from human sensor readings.
We propose a novel approach called Diverse and Discriminative representation Learning (DDLearn) for generalizable lowresource HAR.
Our method significantly outperforms state-of-art methods by an average accuracy improvement of 9.5%.
arXiv Detail & Related papers (2023-05-25T08:24:22Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting.
We propose a novel augmentation-aware self-supervised discriminator that predicts the augmentation parameter of the augmented data.
We compare our method with state-of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional StyleGAN2 architectures.
arXiv Detail & Related papers (2022-05-31T10:35:55Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - Data-Efficient Instance Generation from Instance Discrimination [40.71055888512495]
We propose a data-efficient Instance Generation (InsGen) method based on instance discrimination.
In this work, we propose a data-efficient Instance Generation (InsGen) method based on instance discrimination.
arXiv Detail & Related papers (2021-06-08T17:52:59Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.