Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification
- URL: http://arxiv.org/abs/2405.19204v1
- Date: Wed, 29 May 2024 15:44:51 GMT
- Title: Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification
- Authors: Michail Mamalakis, Héloïse de Vareilles, Shun-Chin Jim Wu, Ingrid Agartz, Lynn Egeland Mørch-Johnsen, Jane Garrison, Jon Simons, Pietro Lio, John Suckling, Graham Murray,
- Abstract summary: Techniques like adversarial learning, contrastive learning, diffusion denoising learning, and ordinary reconstruction learning have become standard.
The study aims to elucidate the advantages of pre-training techniques and fine-tuning strategies to enhance the learning process of neural networks.
- Score: 3.0398616939692777
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the last decade, computer vision has witnessed the establishment of various training and learning approaches. Techniques like adversarial learning, contrastive learning, diffusion denoising learning, and ordinary reconstruction learning have become standard, representing state-of-the-art methods extensively employed for fully training or pre-training networks across various vision tasks. The exploration of fine-tuning approaches has emerged as a current focal point, addressing the need for efficient model tuning with reduced GPU memory usage and time costs while enhancing overall performance, as exemplified by methodologies like low-rank adaptation (LoRA). Key questions arise: which pre-training technique yields optimal results - adversarial, contrastive, reconstruction, or diffusion denoising? How does the performance of these approaches vary as the complexity of fine-tuning is adjusted? This study aims to elucidate the advantages of pre-training techniques and fine-tuning strategies to enhance the learning process of neural networks in independent identical distribution (IID) cohorts. We underscore the significance of fine-tuning by examining various cases, including full tuning, decoder tuning, top-level tuning, and fine-tuning of linear parameters using LoRA. Systematic summaries of model performance and efficiency are presented, leveraging metrics such as accuracy, time cost, and memory efficiency. To empirically demonstrate our findings, we focus on a multi-task segmentation-classification challenge involving the paracingulate sulcus (PCS) using different 3D Convolutional Neural Network (CNN) architectures by using the TOP-OSLO cohort comprising 596 subjects.
Related papers
- Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
We study ways toward robust OoD generalization for deep learning.
We first propose a novel and effective approach to disentangle the spurious correlation between features that are not essential for recognition.
We then study the problem of strengthening neural architecture search in OoD scenarios.
arXiv Detail & Related papers (2024-10-25T20:50:32Z) - Normalization and effective learning rates in reinforcement learning [52.59508428613934]
Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature.
We show that normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate.
We propose to make the learning rate schedule explicit with a simple re- parameterization which we call Normalize-and-Project.
arXiv Detail & Related papers (2024-07-01T20:58:01Z) - Heterogeneous Learning Rate Scheduling for Neural Architecture Search on Long-Tailed Datasets [0.0]
We propose a novel adaptive learning rate scheduling strategy tailored for the architecture parameters of DARTS.
Our approach dynamically adjusts the learning rate of the architecture parameters based on the training epoch, preventing the disruption of well-trained representations.
arXiv Detail & Related papers (2024-06-11T07:32:25Z) - Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models [62.155612146799314]
We propose a novel two-stage training strategy termed Step-Adaptive Training.
In the initial stage, a base denoising model is trained to encompass all timesteps.
We partition the timesteps into distinct groups, fine-tuning the model within each group to achieve specialized denoising capabilities.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - Accelerating Neural Network Training: A Brief Review [0.5825410941577593]
This study examines innovative approaches to expedite the training process of deep neural networks (DNN)
The research utilizes sophisticated methodologies, including Gradient Accumulation (GA), Automatic Mixed Precision (AMP), and Pin Memory (PM)
arXiv Detail & Related papers (2023-12-15T18:43:45Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Neural Architecture for Online Ensemble Continual Learning [6.241435193861262]
We present a fully differentiable ensemble method that allows us to efficiently train an ensemble of neural networks in the end-to-end regime.
The proposed technique achieves SOTA results without a memory buffer and clearly outperforms the reference methods.
arXiv Detail & Related papers (2022-11-27T23:17:08Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.