Predicting Drug-Drug Interactions using Deep Generative Models on Graphs
- URL: http://arxiv.org/abs/2209.09941v1
- Date: Wed, 14 Sep 2022 14:27:32 GMT
- Title: Predicting Drug-Drug Interactions using Deep Generative Models on Graphs
- Authors: Nhat Khang Ngo and Truong Son Hy and Risi Kondor
- Abstract summary: We present the effectiveness of variational graph autoencoders in latent node representations on multimodal networks.
Our approach can produce flexible latent spaces for each node type of the multimodal graph.
To further enhance the models' performance, we suggest a new method that captures the molecular structures of each drug.
- Score: 6.875312133832078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent representations of drugs and their targets produced by contemporary
graph autoencoder-based models have proved useful in predicting many types of
node-pair interactions on large networks, including drug-drug, drug-target, and
target-target interactions. However, most existing approaches model the node's
latent spaces in which node distributions are rigid and disjoint; these
limitations hinder the methods from generating new links among pairs of nodes.
In this paper, we present the effectiveness of variational graph autoencoders
(VGAE) in modeling latent node representations on multimodal networks. Our
approach can produce flexible latent spaces for each node type of the
multimodal graph; the embeddings are used later for predicting links among node
pairs under different edge types. To further enhance the models' performance,
we suggest a new method that concatenates Morgan fingerprints, which capture
the molecular structures of each drug, with their latent embeddings before
preceding them to the decoding stage for link prediction. Our proposed model
shows competitive results on two multimodal networks: (1) a multi-graph
consisting of drug and protein nodes, and (2) a multi-graph consisting of drug
and cell line nodes. Our source code is publicly available at
https://github.com/HySonLab/drug-interactions.
Related papers
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - Leveraging Multi-facet Paths for Heterogeneous Graph Representation Learning [2.603958690885184]
We introduce MF2Vec, a model that uses multi-faceted (fine-grained) paths instead of predefined meta-paths.
This method learns diverse aspects of nodes and their relationships, constructs a homogeneous network, and creates node embeddings for classification, link prediction, and clustering.
arXiv Detail & Related papers (2024-07-30T08:45:32Z) - Modeling Polypharmacy and Predicting Drug-Drug Interactions using Deep
Generative Models on Multimodal Graphs [6.875312133832078]
We present the effectiveness of graph autoencoders (VGAE) in modeling latent node representations on multimodal networks.
Our approach can produce flexible latent spaces for each node type of the multimodal graph.
Morgan fingerprints capture the molecular structures of each drug, with their latent embeddings before preceding them to the decoding stage.
arXiv Detail & Related papers (2023-02-17T04:06:46Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs.
We introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions.
We propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies.
arXiv Detail & Related papers (2022-10-15T18:18:55Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - HybridGNN: Learning Hybrid Representation in Multiplex Heterogeneous
Networks [26.549559266395775]
We propose HybridGNN, an end-to-end graph neural network model with hybrid aggregation flows and hierarchical attentions.
We show that HybridGNN achieves the best performance compared to several state-of-the-art baselines.
arXiv Detail & Related papers (2022-08-03T13:39:47Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - An Interpretable Graph Generative Model with Heterophily [38.59200985962146]
We propose the first edge-independent graph generative model that is expressive enough to capture heterophily.
Our experiments demonstrate the effectiveness of our model for a variety of important application tasks.
arXiv Detail & Related papers (2021-11-04T17:34:39Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z) - Heterogeneous Graph Neural Networks for Malicious Account Detection [64.0046412312209]
We present GEM, the first heterogeneous graph neural network approach for detecting malicious accounts.
We learn discriminative embeddings from heterogeneous account-device graphs based on two fundamental weaknesses of attackers, i.e. device aggregation and activity aggregation.
Experiments show that our approaches consistently perform promising results compared with competitive methods over time.
arXiv Detail & Related papers (2020-02-27T18:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.