論文の概要: jsdp: a Java Stochastic DP Library
- arxiv url: http://arxiv.org/abs/2209.09979v3
- Date: Sun, 10 Sep 2023 13:39:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 23:09:51.878689
- Title: jsdp: a Java Stochastic DP Library
- Title(参考訳): jsdp: javaの確率的dpライブラリ
- Authors: Roberto Rossi
- Abstract要約: 動的プログラミングは、最適なポリシーの発見に"機能的"なアプローチを取る。
jsdpは動的プログラムのモデリングと解決のための汎用ライブラリを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic Programming is a framework for modelling and solving problems of
decision making under uncertainty. Stochastic Dynamic Programming is a branch
of Stochastic Programming that takes a "functional equation" approach to the
discovery of optimal policies. By leveraging constructs - lambda expressions,
functional interfaces, collections and aggregate operators - implemented in
Java to operationalise the MapReduce framework, jsdp provides a general purpose
library for modelling and solving Stochastic Dynamic Programs.
- Abstract(参考訳): 確率的プログラミングは不確実性の下で意思決定の問題をモデル化し解決するためのフレームワークである。
確率動的プログラミング(Stochastic Dynamic Programming)は、最適ポリシーの発見に「関数型方程式」アプローチを採用する確率的プログラミングの一分野である。
MapReduceフレームワークを運用するためにJavaで実装されたコンストラクト(ラムダ式、関数インターフェイス、コレクション、集約演算子)を活用することで、jsdpは確率動的プログラムのモデリングと解決のための汎用ライブラリを提供する。
関連論文リスト
- Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
最適化プログラミング(SP)、最適制御(SOC)、決定プロセス(MDP)に焦点を当てる。
凸多段マルコフ問題の解決の最近の進歩は、動的プログラミング方程式のコスト対ゴー関数の切断面近似に基づいている。
切削平面型法は多段階問題を多段階的に扱えるが、状態(決定)変数は比較的少ない。
論文 参考訳(メタデータ) (2023-03-28T01:30:40Z) - Efficient Global Planning in Large MDPs via Stochastic Primal-Dual
Optimization [12.411844611718958]
提案手法は, 生成モデルに対する多数のクエリの後に, ほぼ最適ポリシーを出力することを示す。
提案手法は計算効率が高く,低次元パラメータベクトルでコンパクトに表現される単一のソフトマックスポリシーを出力する点が大きな利点である。
論文 参考訳(メタデータ) (2022-10-21T15:49:20Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
モデルベースとモデルフリー強化学習を統合した汎用フレームワークを提案する。
最適化に基づく探索のための分解可能な構造特性を持つ新しい推定関数を提案する。
本フレームワークでは,OPERA (Optimization-based Exploration with Approximation) という新しいサンプル効率アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-30T17:59:16Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
ロバストな意思決定プロセス(MDP)は、システムのダイナミクスが変化している、あるいは部分的にしか知られていない決定問題をモデル化するためのフレームワークを提供する。
最近の研究は、長方形長方形の$L_p$頑健なMDPと正規化されたMDPの等価性を確立し、標準MDPと同じレベルの効率を享受する規則化されたポリシー反復スキームを導出した。
本研究では、政策改善のステップに焦点をあて、欲求政策と最適なロバストなベルマン作用素のための具体的な形式を導出する。
論文 参考訳(メタデータ) (2022-05-28T04:05:20Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
我々は、問題インスタンスを断片的線形値関数にマッピングすることを学ぶトレーニング可能なニューラルモデルを導入する。
$nu$-SDDPは、ソリューションの品質を犠牲にすることなく、問題解決コストを大幅に削減できる。
論文 参考訳(メタデータ) (2021-12-01T22:55:23Z) - Efficient semidefinite bounds for multi-label discrete graphical models [6.226454551201676]
このようなモデルにおける主要なクエリの1つは、Posteri(MAP)ネットワークのコストに関するSDPWCSP関数を特定することである。
従来の二重化制約手法と,行ごとの更新に基づく専用SDP/Monteiroスタイルの手法を検討する。
論文 参考訳(メタデータ) (2021-11-24T13:38:34Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z) - Scalable Combinatorial Bayesian Optimization with Tractable Statistical
models [44.25245545568633]
緩和空間上のブラックボックス関数(集合、列、木、グラフなど)を最適化する問題について検討する。
サブモジュール緩和の最近の進歩に基づき,BOCSモデルにおけるAFO問題のスケーラビリティと精度向上を目標として,Parametrized Submodular (PSR) のアプローチを検討する。
多様なベンチマーク問題に対する実験では、BOCSモデルに対するPSRによる大幅な改善が示されている。
論文 参考訳(メタデータ) (2020-08-18T22:56:46Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z) - Analysis of Bayesian Inference Algorithms by the Dynamical Functional
Approach [2.8021833233819486]
学生自明なシナリオにおいて,大ガウス潜在変数モデルを用いて近似推論のアルゴリズムを解析する。
完全データモデルマッチングの場合、レプリカ法から派生した静的順序パラメータの知識により、効率的なアルゴリズム更新が得られる。
論文 参考訳(メタデータ) (2020-01-14T17:22:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。