論文の概要: Understanding Information Disclosure from Secure Computation Output: A Study of Average Salary Computation
- arxiv url: http://arxiv.org/abs/2209.10457v2
- Date: Thu, 21 Mar 2024 01:38:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 20:49:10.232294
- Title: Understanding Information Disclosure from Secure Computation Output: A Study of Average Salary Computation
- Title(参考訳): セキュアな計算結果からの情報開示を理解する:平均給与計算の検討
- Authors: Alessandro Baccarini, Marina Blanton, Shaofeng Zou,
- Abstract要約: 関数結果の観察からプライベート入力に関する情報開示を定量化することが,本研究の課題である。
ボストン市における男女賃金格差の研究に動機づけられたこの研究は、給与の平均計算に焦点を当てる。
- 参考スコア(独自算出の注目度): 58.74407460023331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Secure multi-party computation has seen substantial performance improvements in recent years and is being increasingly used in commercial products. While a significant amount of work was dedicated to improving its efficiency under standard security models, the threat models do not account for information leakage from the output of secure function evaluation. Quantifying information disclosure about private inputs from observing the function outcome is the subject of this work. Motivated by the City of Boston gender pay gap studies, in this work we focus on the computation of the average of salaries and quantify information disclosure about private inputs of one or more participants (the target) to an adversary via information-theoretic techniques. We study a number of distributions including log-normal, which is typically used for modeling salaries. We consequently evaluate information disclosure after repeated evaluation of the average function on overlapping inputs, as was done in the Boston gender pay study that ran multiple times, and provide recommendations for using the sum and average functions in secure computation applications. Our goal is to develop mechanisms that lower information disclosure about participants' inputs to a desired level and provide guidelines for setting up real-world secure evaluation of this function.
- Abstract(参考訳): セキュアなマルチパーティ計算は近年、大幅にパフォーマンスが向上し、商用製品での利用も増えている。
標準的なセキュリティモデル下での効率向上に多大な労力が費やされたが、脅威モデルでは、安全な機能評価の出力からの情報漏洩を考慮していない。
この研究の主題は、個人の入力に関する情報開示を、機能の結果を観察することから定量化することである。
本研究は,ボストン市における男女賃金格差調査に動機付けられ,給与の平均値の計算に焦点をあて,情報理論手法を用いて1人以上の参加者(対象)の個人的入力に関する情報開示を定量化する。
典型的には給与のモデル化に使用されるログ正規化を含む,多数の分布について検討する。
その結果,複数回実行されたボストンのジェンダーペイスタディで実施されたように,重なり合う入力に対する平均関数の繰り返し評価後の情報開示を評価し,セキュアな計算アプリケーションにおける和関数と平均関数の使用を推奨する。
我々のゴールは、参加者の入力に関する情報開示を所望のレベルに減らし、現実世界で安全な評価を行うためのガイドラインを提供することである。
関連論文リスト
- A Customer Level Fraudulent Activity Detection Benchmark for Enhancing Machine Learning Model Research and Evaluation [0.4681661603096334]
本研究では,顧客レベルの不正検出に特化して設計された構造化データセットを含むベンチマークを提案する。
このベンチマークは、ユーザの機密性を確保するために厳格なプライバシーガイドラインに準拠しているだけでなく、顧客中心の機能をカプセル化することによって、豊富な情報ソースを提供する。
論文 参考訳(メタデータ) (2024-04-23T04:57:44Z) - A machine learning workflow to address credit default prediction [0.44943951389724796]
信用デフォルト予測(CDP)は個人や企業の信用力を評価する上で重要な役割を果たす。
CDPを改善するためのワークフローベースのアプローチを提案する。これは、借り手が信用義務を負う確率を評価するタスクを指す。
論文 参考訳(メタデータ) (2024-03-06T15:30:41Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
本研究では,不確実性を考慮した逆確率スコア推定器 (UIPS) を提案する。
実世界の3つのレコメンデーションデータセットを用いた実験結果から,提案したUIPS推定器の有効サンプル効率が示された。
論文 参考訳(メタデータ) (2023-03-11T11:42:26Z) - Enhancing User' s Income Estimation with Super-App Alternative Data [59.60094442546867]
これは、これらの代替データソースのパフォーマンスと、業界に受け入れられた局の収入推定器のパフォーマンスを比較します。
本論文は、金融機関がリスクプロファイルの構築に代替データを導入しようとする動機を示すものである。
論文 参考訳(メタデータ) (2021-04-12T21:34:44Z) - Active Feature Acquisition with Generative Surrogate Models [11.655069211977464]
本研究では,アクティブ機能獲得(AFA)を行うモデルについて検討し,未観測機能に対する環境問合せを行う。
我々の研究は、AFA問題を生成的モデリングタスクとして根底にあるマルコフ決定プロセス(MDP)を再構築する。
本稿では,入力特徴間の依存関係を捕捉し,取得から得られる潜在的な情報を評価する生成代理モデル(GSM)の学習を提案する。
論文 参考訳(メタデータ) (2020-10-06T02:10:06Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - Towards Credit-Fraud Detection via Sparsely Varying Gaussian
Approximations [0.0]
本稿では,この予測システムに不確実性を取り入れたクレジットカード不正検出手法を提案する。
異なるカーネルセットと異なるインジェクションデータポイントで同じ動作を行い、最適な精度が得られた。
論文 参考訳(メタデータ) (2020-07-14T16:56:06Z) - The Variational Bandwidth Bottleneck: Stochastic Evaluation on an
Information Budget [164.65771897804404]
多くのアプリケーションにおいて、複雑な入力データから関連する情報のみを抽出することが望ましい。
情報ボトルネック法は、これを情報理論最適化問題として定式化する。
本稿では,特権情報の推定値について,各例について決定する帯域幅のばらつきボトルネックを提案する。
論文 参考訳(メタデータ) (2020-04-24T18:29:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。