論文の概要: A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A
COVID-19 Case Study
- arxiv url: http://arxiv.org/abs/2209.10542v1
- Date: Tue, 20 Sep 2022 15:12:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 13:42:28.286543
- Title: A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A
COVID-19 Case Study
- Title(参考訳): 特徴選択のためのテントL'evy Flying Sparrow Searchアルゴリズム:COVID-19のケーススタディ
- Authors: Qinwen Yang, Yuelin Gao, Yanjie Song
- Abstract要約: 情報科学の急速な発展によって引き起こされる「次元のカルス」は、大きなデータセットを扱う際に悪影響を及ぼす可能性がある。
本研究では,スナロー探索アルゴリズム(SSA)の変種であるTent L'evy Flying Sparrow Searchアルゴリズム(TFSSA)を提案する。
TFSSAは、分類のためにパッキングパターンにおける機能の最も優れたサブセットを選択するために使用される。
- 参考スコア(独自算出の注目度): 1.6436293069942312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The "Curse of Dimensionality" induced by the rapid development of information
science, might have a negative impact when dealing with big datasets. In this
paper, we propose a variant of the sparrow search algorithm (SSA), called Tent
L\'evy flying sparrow search algorithm (TFSSA), and use it to select the best
subset of features in the packing pattern for classification purposes. SSA is a
recently proposed algorithm that has not been systematically applied to feature
selection problems. After verification by the CEC2020 benchmark function, TFSSA
is used to select the best feature combination to maximize classification
accuracy and minimize the number of selected features. The proposed TFSSA is
compared with nine algorithms in the literature. Nine evaluation metrics are
used to properly evaluate and compare the performance of these algorithms on
twenty-one datasets from the UCI repository. Furthermore, the approach is
applied to the coronavirus disease (COVID-19) dataset, yielding the best
average classification accuracy and the average number of feature selections,
respectively, of 93.47% and 2.1. Experimental results confirm the advantages of
the proposed algorithm in improving classification accuracy and reducing the
number of selected features compared to other wrapper-based algorithms.
- Abstract(参考訳): 情報科学の急速な発展によって引き起こされる「次元のカルス」は、大きなデータセットを扱う際に負の影響をもたらす可能性がある。
本稿では,スナロー探索アルゴリズム (SSA) の変種である Tent L\'evy flying sparrow search algorithm (TFSSA) を提案する。
SSAは、最近提案されたアルゴリズムであり、特徴選択問題に体系的に適用されていない。
CEC2020ベンチマーク関数による検証の後、TFSSAは最適な特徴の組み合わせを選択し、分類精度を最大化し、選択した特徴の数を最小化する。
提案したTFSSAは文献の9つのアルゴリズムと比較される。
9つの評価指標を使用して、uciリポジトリの21のデータセットにおけるこれらのアルゴリズムのパフォーマンスを適切に評価し比較する。
さらに、このアプローチは、新型コロナウイルス(COVID-19)データセットに適用され、それぞれ93.47%と2.1の平均的な分類精度と特徴選択数が得られる。
実験により,提案アルゴリズムの利点は,他のラッパーベースアルゴリズムと比較して,分類精度の向上と特徴数削減にある。
関連論文リスト
- SFE: A Simple, Fast and Efficient Feature Selection Algorithm for
High-Dimensional Data [8.190527783858096]
SFEアルゴリズムは探索エージェントと2つの演算子(非選択と選択)を用いて探索処理を行う。
特徴選択のためのSFEとSFE-PSOの有効性を40個の高次元データセットで比較した。
論文 参考訳(メタデータ) (2023-03-17T12:28:17Z) - Feature selection algorithm based on incremental mutual information and
cockroach swarm optimization [12.297966427336124]
インクリメンタルな相互情報に基づく改良型Swarm知的最適化法(IMIICSO)を提案する。
この方法は、グループアルゴリズムのグローバル検索をガイドするために、決定テーブルの削減知識を抽出する。
改良されたゴキブリ群最適化アルゴリズムによって選択された特徴部分集合の精度は、インクリメンタルな相互情報に基づいて、元のスワム知能最適化アルゴリズムと同等か、ほぼ同程度である。
論文 参考訳(メタデータ) (2023-02-21T08:51:05Z) - An efficient hybrid classification approach for COVID-19 based on Harris
Hawks Optimization and Salp Swarm Optimization [0.0]
本研究では、Covid-19分類のためのHarris Hawks Optimization Algorithm(HHO)とSalp Swarm Optimization(SSA)のハイブリッドバイナリバージョンを提案する。
提案アルゴリズム(HHOSSA)は,SVMで96%の精度,2つの分類器で98%,98%の精度を達成した。
論文 参考訳(メタデータ) (2022-12-25T19:52:18Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - RSO: A Novel Reinforced Swarm Optimization Algorithm for Feature
Selection [0.0]
本稿では,Reinforced Swarm Optimization (RSO) という特徴選択アルゴリズムを提案する。
このアルゴリズムは、広く使われているBee Swarm Optimization (BSO)アルゴリズムとReinforcement Learning (RL)アルゴリズムを組み込んで、優れた検索エージェントの報酬を最大化し、劣悪なエージェントを罰する。
提案手法は、バランスの取れたデータと不均衡なデータの完全なブレンドを含む、広く知られている25のUCIデータセットで評価される。
論文 参考訳(メタデータ) (2021-07-29T17:38:04Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - A Scalable Feature Selection and Opinion Miner Using Whale Optimization
Algorithm [6.248184589339059]
機能選択技術を使用することで、データの理解が向上するだけでなく、スピードと正確性も向上する。
本稿では,Whale Optimizationアルゴリズムを,特徴量の最適部分集合の探索に適用する。
論文 参考訳(メタデータ) (2020-04-21T01:08:45Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
本稿では,二元的ユーザフィードバックから一組のアイテムをクラスタリングする問題について検討する。
最小クラスタ回復誤差率のアルゴリズムを考案する。
適応選択のために,情報理論的誤差下界の導出にインスパイアされたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2019-10-14T09:18:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。