論文の概要: An Image Processing approach to identify solar plages observed at 393.37
nm by Kodaikanal Solar Observatory
- arxiv url: http://arxiv.org/abs/2209.10631v1
- Date: Wed, 21 Sep 2022 19:55:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 14:43:26.025903
- Title: An Image Processing approach to identify solar plages observed at 393.37
nm by Kodaikanal Solar Observatory
- Title(参考訳): コダイカナル・ソーラー・オブザーバによる393.37nmの太陽プラッジの画像処理による検出
- Authors: Sarvesh Gharat and Bhaskar Bose
- Abstract要約: 太陽プラッジ(英: Solar Plages)は、太陽のCa II Kで観測される明るい色相の特徴である。
世紀にわたるデータベースからのプラージュの検出は、簡単な作業ではありません。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solar Plages are bright chromospheric features observed in Ca II K
photographic observations of the sun. These are regions of high magnetic field
concentration thus tracer of magnetic activity of the Sun and are one of the
most important features to study long-term variability of the Sun as Ca II K
spectroheliograms are recorded for more than a century. . However, detection of
the plages from century-long databases is a non-trivial task and need
significant human resources for doing it manually. Hence, in this study, we
propose an image processing algorithm that can identify solar plages from Ca II
K photographic observations. The proposed study has been implemented on
archival data from Kodaikanal Solar Observatory. To ensure that the algorithm
works, irrespective of noise level, brightness, and other image properties, we
randomly draw a sample of images from the data archive to test our algorithm.
- Abstract(参考訳): 太陽プラッジ(英: Solar Plages)は、太陽のCa II Kで観測される明るい色相の特徴である。
これらは高磁場の領域であり、そのため太陽の磁気活動のトレーサであり、1世紀以上にわたってCa II K分光ヘリオグラムが記録されているため、太陽の長期変動を研究する上で最も重要な特徴の1つである。
.
しかし、1世紀にわたるデータベースからプラージュを検知するのは簡単な作業であり、手作業で行うにはかなりの人的資源が必要である。
そこで本研究では,Ca II K写真観測から太陽プラッジを同定する画像処理アルゴリズムを提案する。
本研究は、高台カナル太陽観測所のアーカイブデータに基づいて実施されている。
ノイズレベル,輝度,その他の画像特性に関わらず,アルゴリズムが動作することを保証するため,データアーカイブから画像サンプルをランダムに描画してアルゴリズムをテストする。
関連論文リスト
- Image-Guided Outdoor LiDAR Perception Quality Assessment for Autonomous Driving [107.68311433435422]
本研究では,屋外自動運転環境を対象とした画像誘導点雲質評価アルゴリズムを提案する。
IGO-PQA生成アルゴリズムは、単一フレームのLiDARベースのポイントクラウドに対して、全体的な品質スコアを生成する。
第2のコンポーネントは、非参照アウトドアポイントクラウド品質評価のためのトランスフォーマーベースのIGO-PQA回帰アルゴリズムである。
論文 参考訳(メタデータ) (2024-06-25T04:16:14Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Data-driven soiling detection in PV modules [58.6906336996604]
太陽光発電モジュールの土質比を推定する問題について検討した。
私たちのアルゴリズムの重要な利点は、ラベル付きデータでトレーニングする必要がない、土壌を推定することです。
実験により, 土質比を推定するための工法として, 現状を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-01-30T14:35:47Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
特定の地理的位置に対して太陽光発電(PV)発電量を推定することが重要である。
本稿では,太陽PV発電における気象パラメータの影響を,Bagging,Boosting,Stacking,VottingなどのEnsemble ML(EML)モデルを用いて推定する。
その結果,スタックモデルと投票モデルでは,約96%の予測精度が得られた。
論文 参考訳(メタデータ) (2023-01-21T19:16:03Z) - Incorporating Polar Field Data for Improved Solar Flare Prediction [8.035275738176107]
機械学習モデルを用いて太陽フレア予測性能を向上させるため、太陽の北と南の極域強度に関連するデータを活用することを検討する。
実験の結果,太陽フレア予測における極域データの有用性が示唆され,ハイドケスキルスコア(HSS2)は最大10.1%向上した。
論文 参考訳(メタデータ) (2022-12-04T03:06:11Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - HyperionSolarNet: Solar Panel Detection from Aerial Images [0.7157957528875099]
深層学習法を用いて,空中画像を用いたソーラーパネル位置とその表面積の自動検出を行う。
我々の研究は、ソーラーパネルの検出に効率的でスケーラブルな方法を提供し、分類に0.96の精度とセグメンテーション性能に0.82のIoUスコアを達成している。
論文 参考訳(メタデータ) (2022-01-06T15:43:13Z) - Real-time Ionospheric Imaging of S4 Scintillation from Limited Data with
Parallel Kalman Filters and Smoothness [91.3755431537592]
南アメリカ上空350kmでS4振幅シンチレーションの2次元電離層像を時間分解能1分で作成する。
その結果, 地上受信機のネットワークが比較的良好なエリアでは, 生成画像が信頼性の高いリアルタイム結果を提供できることがわかった。
論文 参考訳(メタデータ) (2021-05-11T23:09:14Z) - A Temporally Consistent Image-based Sun Tracking Algorithm for Solar
Energy Forecasting Applications [0.0]
本研究では、過去の観測から日射の軌跡を補間し、画像中の太陽を位置決めする、画像に基づく太陽追跡アルゴリズムを提案する。
実験の結果, 提案手法は, 画像サイズの1%以下の平均絶対誤差で, 円滑な太陽軌道を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-02T09:59:45Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
機械学習技術の強みを利用した日次太陽エネルギー予測について報告する。
線形, 尾根, ラッソ, 決定木, ランダム森林, 人工ニューラルネットワークなどのベースライン回帰器の予測モデルを実装した。
改良された精度は,2つのグリッドサイズでランダム森林と尾根回帰器によって達成されている。
論文 参考訳(メタデータ) (2020-10-25T17:56:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。