A CT-Based Airway Segmentation Using U$^2$-net Trained by the Dice Loss
Function
- URL: http://arxiv.org/abs/2209.10796v1
- Date: Thu, 22 Sep 2022 05:57:33 GMT
- Title: A CT-Based Airway Segmentation Using U$^2$-net Trained by the Dice Loss
Function
- Authors: Kunpeng Wang, Yuexi Dong, Yunpu Zeng, Zhichun Ye and Yangzhe Wang
- Abstract summary: We employ the U$2$-net trained by the Dice loss function to model the airway tree from the multi-site CT scans.
The derived saliency probability map from the training is applied to the validation data to extract the corresponding airway trees.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Airway segmentation from chest computed tomography scans has played an
essential role in the pulmonary disease diagnosis. The computer-assisted airway
segmentation based on the U-net architecture is more efficient and accurate
compared to the manual segmentation. In this paper we employ the U$^2$-net
trained by the Dice loss function to model the airway tree from the multi-site
CT scans based on 299 training CT scans provided by the ATM'22. The derived
saliency probability map from the training is applied to the validation data to
extract the corresponding airway trees. The observation shows that the majority
of the segmented airway trees behave well from the perspective of accuracy and
connectivity. Refinements such as non-airway regions labeling and removing are
applied to certain obtained airway tree models to display the largest component
of the binary results.
Related papers
- Thoracic Cartilage Ultrasound-CT Registration using Dense Skeleton Graph [49.11220791279602]
It is challenging to accurately map planned paths from a generic atlas to individual patients, particularly for thoracic applications.
A graph-based non-rigid registration is proposed to enable transferring planned paths from the atlas to the current setup.
arXiv Detail & Related papers (2023-07-07T18:57:21Z) - Two-stage Contextual Transformer-based Convolutional Neural Network for
Airway Extraction from CT Images [17.45239343953272]
We propose a novel two-stage 3D contextual transformer-based U-Net for airway segmentation using CT images.
The method consists of two stages, performing initial and refined airway segmentation.
In the first stage, the total airway mask and CT images are provided to the subnetwork, and the intrapulmonary airway mask and corresponding CT scans to the subnetwork.
arXiv Detail & Related papers (2022-12-15T08:18:37Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Extraction of Pulmonary Airway in CT Scans Using Deep Fully
Convolutional Networks [0.0]
We use two-stage fully convolutional networks (FCNs) to automatically segment pulmonary airway in thoracic CT scans from multi-sites.
Specifically, we adopt a 3D FCN with U-shape network architecture to segment pulmonary airway in a coarse resolution.
The reported method was evaluated on the public training set of 300 cases and independent private validation set of 50 cases.
arXiv Detail & Related papers (2022-08-12T15:56:21Z) - BronchusNet: Region and Structure Prior Embedded Representation Learning
for Bronchus Segmentation and Classification [53.53758990624962]
We propose a region and structure prior embedded framework named BronchusNet to achieve accurate bronchial analysis.
For bronchus segmentation, we propose an adaptive hard region-aware UNet that incorporates multi-level prior guidance of hard pixel-wise samples.
For the classification of bronchial branches, we propose a hybrid point-voxel graph learning module.
arXiv Detail & Related papers (2022-05-14T02:32:33Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - LTSP: Long-Term Slice Propagation for Accurate Airway Segmentation [19.40457329997144]
Bronchoscopic intervention is a widely-used clinical technique for pulmonary diseases.
The airway map could be extracted from chest computed tomography (CT) scans automatically.
Due to the complex tree-like structure of the airway, preserving its topology completeness is a challenging task.
arXiv Detail & Related papers (2022-02-13T08:47:01Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images [1.8692254863855962]
We present an effective framework and refinement process of pulmonary vessel segmentation from chest computed tomographic (CT) images.
The key to our approach is a 2.5D segmentation network applied from three axes, which presents a robust and fully automated pulmonary vessel segmentation result.
Our method outperforms other network structures by a large margin and achieves by far the highest average DICE score of 0.9272 and precision of 0.9310.
arXiv Detail & Related papers (2021-07-03T21:46:29Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - U-Det: A Modified U-Net architecture with bidirectional feature network
for lung nodule segmentation [0.0]
This article proposes U-Det, a resource-efficient model architecture, which is an end to end deep learning approach to solve the task at hand.
The proposed model is extensively trained and evaluated on the publicly available LUNA-16 dataset consisting of 1186 lung nodules.
The U-Det architecture outperforms the existing U-Net model with the Dice similarity coefficient (DSC) of 82.82% and achieves results comparable to human experts.
arXiv Detail & Related papers (2020-03-20T14:25:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.