Color Recommendation for Vector Graphic Documents based on Multi-Palette
Representation
- URL: http://arxiv.org/abs/2209.10820v1
- Date: Thu, 22 Sep 2022 07:06:17 GMT
- Title: Color Recommendation for Vector Graphic Documents based on Multi-Palette
Representation
- Authors: Qianru Qiu, Xueting Wang, Mayu Otani, Yuki Iwazaki
- Abstract summary: We extract multiple color palettes from each visual element in a graphic document, and then combine them into a color sequence.
We train the model and build a color recommendation system on a large-scale dataset of vector graphic documents.
- Score: 12.71266194474117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vector graphic documents present multiple visual elements, such as images,
shapes, and texts. Choosing appropriate colors for multiple visual elements is
a difficult but crucial task for both amateurs and professional designers.
Instead of creating a single color palette for all elements, we extract
multiple color palettes from each visual element in a graphic document, and
then combine them into a color sequence. We propose a masked color model for
color sequence completion and recommend the specified colors based on color
context in multi-palette with high probability. We train the model and build a
color recommendation system on a large-scale dataset of vector graphic
documents. The proposed color recommendation method outperformed other
state-of-the-art methods by both quantitative and qualitative evaluations on
color prediction and our color recommendation system received positive feedback
from professional designers in an interview study.
Related papers
- Paint Bucket Colorization Using Anime Character Color Design Sheets [72.66788521378864]
We introduce inclusion matching, which allows the network to understand the relationships between segments.
Our network's training pipeline significantly improves performance in both colorization and consecutive frame colorization.
To support our network's training, we have developed a unique dataset named PaintBucket-Character.
arXiv Detail & Related papers (2024-10-25T09:33:27Z) - MultiColor: Image Colorization by Learning from Multiple Color Spaces [4.738828630428634]
MultiColor is a new learning-based approach to automatically colorize grayscale images.
We employ a set of dedicated colorization modules for individual color space.
With these predicted color channels representing various color spaces, a complementary network is designed to exploit the complementarity and generate pleasing and reasonable colorized images.
arXiv Detail & Related papers (2024-08-08T02:34:41Z) - Automatic Controllable Colorization via Imagination [55.489416987587305]
We propose a framework for automatic colorization that allows for iterative editing and modifications.
By understanding the content within a grayscale image, we utilize a pre-trained image generation model to generate multiple images that contain the same content.
These images serve as references for coloring, mimicking the process of human experts.
arXiv Detail & Related papers (2024-04-08T16:46:07Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) is a multi-modal colorization method that leverages the pre-trained Stable Diffusion (SD) model.
We present an effective way to encode user strokes to enable precise local color manipulation.
We also introduce a novel module based on self-attention and a content-guided deformable autoencoder to address the long-standing issues of color overflow and inaccurate coloring.
arXiv Detail & Related papers (2024-02-16T17:51:13Z) - Multimodal Color Recommendation in Vector Graphic Documents [14.287758028119788]
We propose a multimodal masked color model that integrates both color and textual contexts to provide text-aware color recommendation for graphic documents.
Our proposed model comprises self-attention networks to capture the relationships between colors in multiple palettes, and cross-attention networks that incorporate both color and CLIP-based text representations.
arXiv Detail & Related papers (2023-08-08T08:17:39Z) - Language-based Photo Color Adjustment for Graphic Designs [38.43984897069872]
We introduce an interactive language-based approach for photo recoloring.
Our model can predict the source colors and the target regions, and then recolor the target regions with the source colors based on the given language-based instruction.
arXiv Detail & Related papers (2023-08-06T08:53:49Z) - BiSTNet: Semantic Image Prior Guided Bidirectional Temporal Feature
Fusion for Deep Exemplar-based Video Colorization [70.14893481468525]
We present an effective BiSTNet to explore colors of reference exemplars and utilize them to help video colorization.
We first establish the semantic correspondence between each frame and the reference exemplars in deep feature space to explore color information from reference exemplars.
We develop a mixed expert block to extract semantic information for modeling the object boundaries of frames so that the semantic image prior can better guide the colorization process.
arXiv Detail & Related papers (2022-12-05T13:47:15Z) - PalGAN: Image Colorization with Palette Generative Adversarial Networks [51.59276436217957]
We propose a new GAN-based colorization approach PalGAN, integrated with palette estimation and chromatic attention.
PalGAN outperforms state-of-the-arts in quantitative evaluation and visual comparison, delivering notable diverse, contrastive, and edge-preserving appearances.
arXiv Detail & Related papers (2022-10-20T12:28:31Z) - Color Counting for Fashion, Art, and Design [0.0]
First step in color modelling is to estimate the number of colors in the item / object.
We propose a novel color counting method based on cumulative color histogram.
This work is the first of its kind that addresses the problem of color-counting machine.
arXiv Detail & Related papers (2021-10-13T12:42:15Z) - Image Colorization: A Survey and Dataset [94.59768013860668]
This article presents a comprehensive survey of state-of-the-art deep learning-based image colorization techniques.
It categorizes the existing colorization techniques into seven classes and discusses important factors governing their performance.
We perform an extensive experimental evaluation of existing image colorization methods using both existing datasets and our proposed one.
arXiv Detail & Related papers (2020-08-25T01:22:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.