MultiColor: Image Colorization by Learning from Multiple Color Spaces
- URL: http://arxiv.org/abs/2408.04172v1
- Date: Thu, 8 Aug 2024 02:34:41 GMT
- Title: MultiColor: Image Colorization by Learning from Multiple Color Spaces
- Authors: Xiangcheng Du, Zhao Zhou, Yanlong Wang, Zhuoyao Wang, Yingbin Zheng, Cheng Jin,
- Abstract summary: MultiColor is a new learning-based approach to automatically colorize grayscale images.
We employ a set of dedicated colorization modules for individual color space.
With these predicted color channels representing various color spaces, a complementary network is designed to exploit the complementarity and generate pleasing and reasonable colorized images.
- Score: 4.738828630428634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep networks have shown impressive performance in the image restoration tasks, such as image colorization. However, we find that previous approaches rely on the digital representation from single color model with a specific mapping function, a.k.a., color space, during the colorization pipeline. In this paper, we first investigate the modeling of different color spaces, and find each of them exhibiting distinctive characteristics with unique distribution of colors. The complementarity among multiple color spaces leads to benefits for the image colorization task. We present MultiColor, a new learning-based approach to automatically colorize grayscale images that combines clues from multiple color spaces. Specifically, we employ a set of dedicated colorization modules for individual color space. Within each module, a transformer decoder is first employed to refine color query embeddings and then a color mapper produces color channel prediction using the embeddings and semantic features. With these predicted color channels representing various color spaces, a complementary network is designed to exploit the complementarity and generate pleasing and reasonable colorized images. We conduct extensive experiments on real-world datasets, and the results demonstrate superior performance over the state-of-the-arts.
Related papers
- Color-Oriented Redundancy Reduction in Dataset Distillation [39.0015492336067]
We propose a framework that minimizes color redundancy at the individual image and overall dataset levels.
At the image level, we employ a palette network, a specialized neural network, to dynamically allocate colors from a reduced color space to each pixel.
A comprehensive performance study is conducted, demonstrating the superior performance of our proposed color-aware DD compared to existing DD methods.
arXiv Detail & Related papers (2024-11-18T06:48:11Z) - Paint Bucket Colorization Using Anime Character Color Design Sheets [72.66788521378864]
We introduce inclusion matching, which allows the network to understand the relationships between segments.
Our network's training pipeline significantly improves performance in both colorization and consecutive frame colorization.
To support our network's training, we have developed a unique dataset named PaintBucket-Character.
arXiv Detail & Related papers (2024-10-25T09:33:27Z) - Transforming Color: A Novel Image Colorization Method [8.041659727964305]
This paper introduces a novel method for image colorization that utilizes a color transformer and generative adversarial networks (GANs)
The proposed method integrates a transformer architecture to capture global information and a GAN framework to improve visual quality.
Experimental results show that the proposed network significantly outperforms other state-of-the-art colorization techniques.
arXiv Detail & Related papers (2024-10-07T07:23:42Z) - Palette-based Color Transfer between Images [9.471264982229508]
We propose a new palette-based color transfer method that can automatically generate a new color scheme.
With a redesigned palette-based clustering method, pixels can be classified into different segments according to color distribution.
Our method exhibits significant advantages over peer methods in terms of natural realism, color consistency, generality, and robustness.
arXiv Detail & Related papers (2024-05-14T01:41:19Z) - Automatic Controllable Colorization via Imagination [55.489416987587305]
We propose a framework for automatic colorization that allows for iterative editing and modifications.
By understanding the content within a grayscale image, we utilize a pre-trained image generation model to generate multiple images that contain the same content.
These images serve as references for coloring, mimicking the process of human experts.
arXiv Detail & Related papers (2024-04-08T16:46:07Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) is a multi-modal colorization method that leverages the pre-trained Stable Diffusion (SD) model.
We present an effective way to encode user strokes to enable precise local color manipulation.
We also introduce a novel module based on self-attention and a content-guided deformable autoencoder to address the long-standing issues of color overflow and inaccurate coloring.
arXiv Detail & Related papers (2024-02-16T17:51:13Z) - Name Your Colour For the Task: Artificially Discover Colour Naming via
Colour Quantisation Transformer [62.75343115345667]
We propose a novel colour quantisation transformer, CQFormer, that quantises colour space while maintaining machine recognition on the quantised images.
We observe the consistent evolution pattern between our artificial colour system and basic colour terms across human languages.
Our colour quantisation method also offers an efficient quantisation method that effectively compresses the image storage.
arXiv Detail & Related papers (2022-12-07T03:39:18Z) - Instance-aware Image Colorization [51.12040118366072]
In this paper, we propose a method for achieving instance-aware colorization.
Our network architecture leverages an off-the-shelf object detector to obtain cropped object images.
We use a similar network to extract the full-image features and apply a fusion module to predict the final colors.
arXiv Detail & Related papers (2020-05-21T17:59:23Z) - Learning to Structure an Image with Few Colors [59.34619548026885]
We propose a color quantization network, ColorCNN, which learns to structure the images from the classification loss in an end-to-end manner.
With only a 1-bit color space (i.e., two colors), the proposed network achieves 82.1% top-1 accuracy on the CIFAR10 dataset.
For applications, when encoded with PNG, the proposed color quantization shows superiority over other image compression methods in the extremely low bit-rate regime.
arXiv Detail & Related papers (2020-03-17T17:56:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.