Theory of the Loschmidt echo and dynamical quantum phase transitions in
disordered Fermi systems
- URL: http://arxiv.org/abs/2209.10895v1
- Date: Thu, 22 Sep 2022 10:04:45 GMT
- Title: Theory of the Loschmidt echo and dynamical quantum phase transitions in
disordered Fermi systems
- Authors: Tuomas I. Vanhala and Teemu Ojanen
- Abstract summary: We develop the theory of the Loschmidt echo and dynamical phase transitions in non-interacting strongly disordered Fermi systems after a quench.
In finite systems the Loschmidt echo displays zeros in the complex time plane that depend on the random potential realization.
We show that this dynamical phase transition can be understood as a transition in the distribution function of the smallest eigenvalue of the Loschmidt matrix.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we develop the theory of the Loschmidt echo and dynamical phase
transitions in non-interacting strongly disordered Fermi systems after a
quench. In finite systems the Loschmidt echo displays zeros in the complex time
plane that depend on the random potential realization. Remarkably, the zeros
coalesce to form a 2D manifold in the thermodynamic limit, atypical for 1D
systems, crossing the real axis at a sharply-defined critical time. We show
that this dynamical phase transition can be understood as a transition in the
distribution function of the smallest eigenvalue of the Loschmidt matrix, and
develop a finite-size scaling theory. Contrary to expectations, the notion of
dynamical phase transitions in disordered systems becomes decoupled from the
equilibrium Anderson localization transition. Our results highlight the
striking qualitative differences of quench dynamics in disordered and
non-disordered many-fermion systems.
Related papers
- Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Dynamical singularity of the rate function for quench dynamics in
finite-size quantum systems [1.2514666672776884]
We study the realization of the dynamical singularity of the rate function for finite-size systems under the twist boundary condition.
We show that exact zeros of the Loschmidt echo can be always achieved when the postquench parameter is across the underlying equilibrium phase transition point.
arXiv Detail & Related papers (2022-11-06T14:35:57Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Loschmidt amplitude spectrum in dynamical quantum phase transitions [0.0]
We study how the system behaves in the vicinity of dynamical quantum phase transitions (DQPTs)
Our findings provide a better understanding of the characteristics of the out-of-equilibrium system around DQPT.
arXiv Detail & Related papers (2022-03-14T10:54:31Z) - Peratic Phase Transition by Bulk-to-Surface Response [26.49714398456829]
We show a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems.
Our prediction of peratic phase transition has direct consequences in quantum simulation platforms such as Rydberg atoms and superconducting qubits.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Dynamical Topological Quantum Phase Transitions at Criticality [0.0]
We contribute to expanding the systematic understanding of the interrelation between the equilibrium quantum phase transition and the dynamical quantum phase transition (DQPT)
Specifically, we find that dynamical quantum phase transition relies on the existence of massless it propagating quasiparticles as signaled by their impact on the Loschmidt overlap.
The underlying two dimensional model reveals gapless modes, which do not couple to the dynamical quantum phase transitions, while relevant massless quasiparticles present periodic nonanalytic signatures on the Loschmidt amplitude.
arXiv Detail & Related papers (2021-04-09T13:38:39Z) - Determination of dynamical quantum phase transitions in strongly
correlated many-body systems using Loschmidt cumulants [0.0]
We use Loschmidt cumulants to determine the critical times of interacting quantum systems after a quench.
Our work demonstrates that Loschmidt cumulants are a powerful tool to unravel the far-from-equilibrium dynamics of strongly correlated many-body systems.
arXiv Detail & Related papers (2020-11-27T09:03:47Z) - Dynamical quantum phase transition in a bosonic system with long-range
interactions [0.0]
We show that the emergence of a dynamical quantum phase transition hinges on the generation of a finite mass gap following the quench.
In general, we can define two distinct dynamical phases characterized by the finiteness of the post-quench mass gap.
The Loschmidt echo exhibits periodical nonanalytic cusps whenever the initial state has a vanishing mass gap and the final state has a finite mass gap.
arXiv Detail & Related papers (2020-11-11T10:04:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.