Peratic Phase Transition by Bulk-to-Surface Response
- URL: http://arxiv.org/abs/2109.13254v3
- Date: Thu, 6 Oct 2022 14:22:23 GMT
- Title: Peratic Phase Transition by Bulk-to-Surface Response
- Authors: Xingze Qiu, Hai Wang, Wei Xia and Xiaopeng Li
- Abstract summary: We show a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems.
Our prediction of peratic phase transition has direct consequences in quantum simulation platforms such as Rydberg atoms and superconducting qubits.
- Score: 26.49714398456829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of dynamical phase transitions has been attracting considerable
research efforts in the last decade. One theme of present interest is to search
for exotic scenarios beyond the framework of equilibrium phase transitions.
Here, we establish a duality between many-body dynamics and static Hamiltonian
ground states for both classical and quantum systems. We construct frustration
free Hamiltonians whose ground state phase transitions have rigorous duality to
chaotic transitions in dynamical systems. By this duality, we show the
corresponding ground state phase transitions are characterized by
bulk-to-surface response, which are then dubbed "peratic" meaning defined by
response to the boundary. For the classical system, we show how the time-like
dimension emerges in the static ground states. For the quantum system, the
ground state is a superposition of geometrical lines on a two dimensional
array, which encode the dynamical Floquet evolution history of one dimensional
disordered spin chains. Our prediction of peratic phase transition has direct
consequences in quantum simulation platforms such as Rydberg atoms and
superconducting qubits, as well as anisotropic spin glass materials. The
discovery would shed light on the unification of dynamical phase transitions
with equilibrium systems.
Related papers
- Observation of a finite-energy phase transition in a one-dimensional
quantum simulator [39.899531336700136]
We show the first experimental demonstration of a finite-energy phase transition in 1D.
By preparing initial states with different energies in a 1D trapped-ion quantum simulator, we study the finite-energy phase diagram of a long-range interacting quantum system.
arXiv Detail & Related papers (2023-10-30T18:00:01Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Dynamical quantum phase transitions in a spinor Bose-Einstein condensate
and criticality enhanced quantum sensing [2.3046646540823916]
Quantum phase transitions universally exist in the ground and excited states of quantum many-body systems.
We unravel that both the ground and excited-state quantum phase transitions in spinor condensates can be diagnosed with dynamical phase transitions.
This work advances the exploration of excited-state quantum phase transitions via a scheme that can immediately be applied to a broad class of few-mode quantum systems.
arXiv Detail & Related papers (2022-09-23T05:27:17Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Quantum behavior of a superconducting Duffing oscillator at the
dissipative phase transition [0.817918559522319]
We reconcile the classical and quantum descriptions in a unified picture of quantum metastability.
By engineering the lifetime of the metastable states sufficiently large, we observe a first-order dissipative phase transition.
Results reveal a smooth quantum evolution behind a sudden dissipative transition.
arXiv Detail & Related papers (2022-06-13T17:35:27Z) - Predicting Critical Phases from Entanglement Dynamics in XXZ Alternating
Chain [0.0]
The quantum XXZ spin model with alternating bond strengths under magnetic field has a rich equilibrium phase diagram.
We show that the nearest neighbor bipartite and multipartite entanglement can detect quantum critical lines and phases in this model.
arXiv Detail & Related papers (2021-12-22T18:02:51Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Dynamical Topological Quantum Phase Transitions at Criticality [0.0]
We contribute to expanding the systematic understanding of the interrelation between the equilibrium quantum phase transition and the dynamical quantum phase transition (DQPT)
Specifically, we find that dynamical quantum phase transition relies on the existence of massless it propagating quasiparticles as signaled by their impact on the Loschmidt overlap.
The underlying two dimensional model reveals gapless modes, which do not couple to the dynamical quantum phase transitions, while relevant massless quasiparticles present periodic nonanalytic signatures on the Loschmidt amplitude.
arXiv Detail & Related papers (2021-04-09T13:38:39Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.