論文の概要: XClusters: Explainability-first Clustering
- arxiv url: http://arxiv.org/abs/2209.10956v1
- Date: Thu, 22 Sep 2022 12:17:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 14:01:04.341273
- Title: XClusters: Explainability-first Clustering
- Title(参考訳): XClusters: 説明可能性優先のクラスタリング
- Authors: Hyunseung Hwang, Steven Euijong Whang
- Abstract要約: 本稿では,クラスタリングにおいて説明可能性が第一級市民となる,説明可能性優先クラスタリングの問題について検討する。
我々のアプローチは、クラスタリングと決定ツリーのトレーニングを行い、決定ツリーのパフォーマンスとサイズがクラスタリング結果にも影響を及ぼすようにすることだ。
- 参考スコア(独自算出の注目度): 7.303121062667876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of explainability-first clustering where explainability
becomes a first-class citizen for clustering. Previous clustering approaches
use decision trees for explanation, but only after the clustering is completed.
In contrast, our approach is to perform clustering and decision tree training
holistically where the decision tree's performance and size also influence the
clustering results. We assume the attributes for clustering and explaining are
distinct, although this is not necessary. We observe that our problem is a
monotonic optimization where the objective function is a difference of
monotonic functions. We then propose an efficient branch-and-bound algorithm
for finding the best parameters that lead to a balance of cluster distortion
and decision tree explainability. Our experiments show that our method can
improve the explainability of any clustering that fits in our framework.
- Abstract(参考訳): 本稿では,クラスタリングにおいて説明可能性が第一級市民となる,説明可能性優先クラスタリングの問題について検討する。
以前のクラスタリングアプローチでは、説明に決定木を使用しているが、クラスタリングが完了した後のみである。
これとは対照的に,決定木の性能とサイズがクラスタリング結果に影響を及ぼすようなクラスタリングと決定木トレーニングを行う。
クラスタリングと説明の属性は別物だと仮定していますが、これは必要ありません。
対象関数がモノトニック関数の差であるようなモノトニック最適化が問題であることを示す。
そこで我々は,クラスタの歪みと決定木の説明可能性のバランスを導く最適なパラメータを見つけるための効率的な分岐結合アルゴリズムを提案する。
実験の結果,本手法はフレームワークに適合するクラスタリングの説明可能性を向上させることができることがわかった。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - ABCDE: Application-Based Cluster Diff Evals [49.1574468325115]
それは実用性を目指しており、アイテムはアプリケーション固有の重要な値を持つことができ、クラスタリングがどちらが優れているかを判断するときに人間の判断を使うのは粗悪であり、アイテムの任意のスライスのためのメトリクスを報告できる。
クラスタリング品質の差分を測定するアプローチは、高価な地平を前もって構築し、それに関して各クラスタリングを評価する代わりに、ABCDEはクラスタリング間の実際の差分に基づいて、判定のための質問をサンプリングする。
論文 参考訳(メタデータ) (2024-07-31T08:29:35Z) - Towards Explainable Clustering: A Constrained Declarative based Approach [0.294944680995069]
古典的クラスタリング基準の観点から,高品質なクラスタリングを実現することを目指しており,その説明が可能である。
クラスタリングに関する優れたグローバルな説明は、各クラスタの特徴を、そのオブジェクトを記述する能力を考慮して与えるべきである。
そこで我々は,ECS と呼ばれる新しい解釈可能な制約付き手法を提案する。
論文 参考訳(メタデータ) (2024-03-26T21:00:06Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Using Decision Trees for Interpretable Supervised Clustering [0.0]
教師付きクラスタリングは、高い確率密度でラベル付きデータのクラスタを形成することを目的としている。
特に、特定のクラスのデータのクラスタを見つけ、包括的なルールのセットでクラスタを記述することに興味があります。
論文 参考訳(メタデータ) (2023-07-16T17:12:45Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - How to Find a Good Explanation for Clustering? [7.951746797489421]
Moshkovitz氏、Dasgupta氏、Rashtchian氏、Frost氏(ICML 2020)は、説明可能な$k$-meansと$k$-medianクラスタリングのエレガントなモデルを提案した。
説明可能なクラスタリングに関する2つの自然なアルゴリズム的問題について検討する。
厳密なアルゴリズム分析では、入力サイズ、データの寸法、外乱数、クラスタ数、近似比といったパラメータが、説明可能なクラスタリングの計算複雑性に与える影響について光を当てています。
論文 参考訳(メタデータ) (2021-12-13T11:48:38Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Probabilistic Fair Clustering [31.628993679745292]
フェアクラスタリングにおける以前の仕事は、グループメンバーシップの完全な知識を前提としている。
近似比を保証したより一般的な設定でクラスタリングアルゴリズムを提案する。
また、異なる群が順序と距離の概念を持つ「計量的メンバーシップ」の問題にも対処する。
論文 参考訳(メタデータ) (2020-06-19T01:34:21Z) - Exact Recovery of Mangled Clusters with Same-Cluster Queries [20.03712152278538]
半教師付きアクティブクラスタリングフレームワークにおけるクラスタリカバリ問題について検討する。
我々は、$n$ポイントを$k$クラスタに分割するアルゴリズムを設計し、$O(k3 ln k ln n)$oracleクエリと$tildeO(kn + k3)$でクラスタを非分類エラーで復元する。
論文 参考訳(メタデータ) (2020-06-08T15:27:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。