Privacy Attacks Against Biometric Models with Fewer Samples:
Incorporating the Output of Multiple Models
- URL: http://arxiv.org/abs/2209.11020v1
- Date: Thu, 22 Sep 2022 14:00:43 GMT
- Title: Privacy Attacks Against Biometric Models with Fewer Samples:
Incorporating the Output of Multiple Models
- Authors: Sohaib Ahmad, Benjamin Fuller, Kaleel Mahmood
- Abstract summary: Authentication systems are vulnerable to model inversion attacks where an adversary approximates the inverse of a target machine learning model.
This is because inverting a biometric model allows the attacker to produce a realistic biometric input to spoof biometric authentication systems.
We propose a new technique that drastically reduces the amount of training data necessary for model inversion attacks.
- Score: 2.1874132949602654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Authentication systems are vulnerable to model inversion attacks where an
adversary is able to approximate the inverse of a target machine learning
model. Biometric models are a prime candidate for this type of attack. This is
because inverting a biometric model allows the attacker to produce a realistic
biometric input to spoof biometric authentication systems.
One of the main constraints in conducting a successful model inversion attack
is the amount of training data required. In this work, we focus on iris and
facial biometric systems and propose a new technique that drastically reduces
the amount of training data necessary. By leveraging the output of multiple
models, we are able to conduct model inversion attacks with 1/10th the training
set size of Ahmad and Fuller (IJCB 2020) for iris data and 1/1000th the
training set size of Mai et al. (Pattern Analysis and Machine Intelligence
2019) for facial data. We denote our new attack technique as structured random
with alignment loss. Our attacks are black-box, requiring no knowledge of the
weights of the target neural network, only the dimension, and values of the
output vector.
To show the versatility of the alignment loss, we apply our attack framework
to the task of membership inference (Shokri et al., IEEE S&P 2017) on biometric
data. For the iris, membership inference attack against classification networks
improves from 52% to 62% accuracy.
Related papers
- Membership Inference Attacks on Diffusion Models via Quantile Regression [30.30033625685376]
We demonstrate a privacy vulnerability of diffusion models through amembership inference (MI) attack.
Our proposed MI attack learns quantile regression models that predict (a quantile of) the distribution of reconstruction loss on examples not used in training.
We show that our attack outperforms the prior state-of-the-art attack while being substantially less computationally expensive.
arXiv Detail & Related papers (2023-12-08T16:21:24Z) - Fault Injection and Safe-Error Attack for Extraction of Embedded Neural Network Models [1.2499537119440245]
We focus on embedded deep neural network models on 32-bit microcontrollers in the Internet of Things (IoT)
We propose a black-box approach to craft a successful attack set.
For a classical convolutional neural network, we successfully recover at least 90% of the most significant bits with about 1500 crafted inputs.
arXiv Detail & Related papers (2023-08-31T13:09:33Z) - One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training [54.622474306336635]
A new weight modification attack called bit flip attack (BFA) was proposed, which exploits memory fault inject techniques.
We propose a training-assisted bit flip attack, in which the adversary is involved in the training stage to build a high-risk model to release.
arXiv Detail & Related papers (2023-08-12T09:34:43Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
We propose a new training paradigm for a learning-based model inversion attack that can achieve higher attack accuracy in a black-box setting.
First, we regularize the training process of the attack model with an added semantic loss function.
Second, we inject adversarial examples into the training data to increase the diversity of the class-related parts.
arXiv Detail & Related papers (2023-06-24T13:40:58Z) - A Plot is Worth a Thousand Words: Model Information Stealing Attacks via
Scientific Plots [14.998272283348152]
It is well known that an adversary can leverage a target ML model's output to steal the model's information.
We propose a new side channel for model information stealing attacks, i.e., models' scientific plots.
arXiv Detail & Related papers (2023-02-23T12:57:34Z) - Pseudo Label-Guided Model Inversion Attack via Conditional Generative
Adversarial Network [102.21368201494909]
Model inversion (MI) attacks have raised increasing concerns about privacy.
Recent MI attacks leverage a generative adversarial network (GAN) as an image prior to narrow the search space.
We propose Pseudo Label-Guided MI (PLG-MI) attack via conditional GAN (cGAN)
arXiv Detail & Related papers (2023-02-20T07:29:34Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z) - Practical No-box Adversarial Attacks against DNNs [31.808770437120536]
We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model.
We propose three mechanisms for training with a very small dataset and find that prototypical reconstruction is the most effective.
Our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
arXiv Detail & Related papers (2020-12-04T11:10:03Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
Adversarial attacking aims to fool deep neural networks with adversarial examples.
We propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently.
arXiv Detail & Related papers (2020-09-19T09:12:24Z) - How Does Data Augmentation Affect Privacy in Machine Learning? [94.52721115660626]
We propose new MI attacks to utilize the information of augmented data.
We establish the optimal membership inference when the model is trained with augmented data.
arXiv Detail & Related papers (2020-07-21T02:21:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.