Membership Inference Attacks on Diffusion Models via Quantile Regression
- URL: http://arxiv.org/abs/2312.05140v1
- Date: Fri, 8 Dec 2023 16:21:24 GMT
- Title: Membership Inference Attacks on Diffusion Models via Quantile Regression
- Authors: Shuai Tang, Zhiwei Steven Wu, Sergul Aydore, Michael Kearns, Aaron
Roth
- Abstract summary: We demonstrate a privacy vulnerability of diffusion models through amembership inference (MI) attack.
Our proposed MI attack learns quantile regression models that predict (a quantile of) the distribution of reconstruction loss on examples not used in training.
We show that our attack outperforms the prior state-of-the-art attack while being substantially less computationally expensive.
- Score: 30.30033625685376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, diffusion models have become popular tools for image synthesis
because of their high-quality outputs. However, like other large-scale models,
they may leak private information about their training data. Here, we
demonstrate a privacy vulnerability of diffusion models through a
\emph{membership inference (MI) attack}, which aims to identify whether a
target example belongs to the training set when given the trained diffusion
model. Our proposed MI attack learns quantile regression models that predict (a
quantile of) the distribution of reconstruction loss on examples not used in
training. This allows us to define a granular hypothesis test for determining
the membership of a point in the training set, based on thresholding the
reconstruction loss of that point using a custom threshold tailored to the
example. We also provide a simple bootstrap technique that takes a majority
membership prediction over ``a bag of weak attackers'' which improves the
accuracy over individual quantile regression models. We show that our attack
outperforms the prior state-of-the-art attack while being substantially less
computationally expensive -- prior attacks required training multiple ``shadow
models'' with the same architecture as the model under attack, whereas our
attack requires training only much smaller models.
Related papers
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - Scalable Membership Inference Attacks via Quantile Regression [35.33158339354343]
Membership inference attacks are designed to determine, using black box access to trained models, whether a particular example was used in training or not.
We introduce a new class of attacks based on performing quantile regression on the distribution of confidence scores induced by the model under attack on points that are not used in training.
arXiv Detail & Related papers (2023-07-07T16:07:00Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
We propose a new training paradigm for a learning-based model inversion attack that can achieve higher attack accuracy in a black-box setting.
First, we regularize the training process of the attack model with an added semantic loss function.
Second, we inject adversarial examples into the training data to increase the diversity of the class-related parts.
arXiv Detail & Related papers (2023-06-24T13:40:58Z) - An Efficient Subpopulation-based Membership Inference Attack [11.172550334631921]
We introduce a fundamentally different MI attack approach which obviates the need to train hundreds of shadow models.
We achieve the state-of-the-art membership inference accuracy while significantly reducing the training cost.
arXiv Detail & Related papers (2022-03-04T00:52:06Z) - Reconstructing Training Data with Informed Adversaries [30.138217209991826]
Given access to a machine learning model, can an adversary reconstruct the model's training data?
This work studies this question from the lens of a powerful informed adversary who knows all the training data points except one.
We show it is feasible to reconstruct the remaining data point in this stringent threat model.
arXiv Detail & Related papers (2022-01-13T09:19:25Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
adversarial examples have been long considered a real threat to machine learning models.
We propose an alternative deployment-based defense paradigm that goes beyond the traditional white-box and black-box threat models.
arXiv Detail & Related papers (2021-02-09T20:07:13Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z) - Leveraging Siamese Networks for One-Shot Intrusion Detection Model [0.0]
Supervised Machine Learning (ML) to enhance Intrusion Detection Systems has been the subject of significant research.
retraining the models in-situ renders the network susceptible to attacks owing to the time-window required to acquire a sufficient volume of data.
Here, a complementary approach referred to as 'One-Shot Learning', whereby a limited number of examples of a new attack-class is used to identify a new attack-class.
A Siamese Network is trained to differentiate between classes based on pairs similarities, rather than features, allowing to identify new and previously unseen attacks.
arXiv Detail & Related papers (2020-06-27T11:40:01Z) - Adversarial Imitation Attack [63.76805962712481]
A practical adversarial attack should require as little as possible knowledge of attacked models.
Current substitute attacks need pre-trained models to generate adversarial examples.
In this study, we propose a novel adversarial imitation attack.
arXiv Detail & Related papers (2020-03-28T10:02:49Z) - DaST: Data-free Substitute Training for Adversarial Attacks [55.76371274622313]
We propose a data-free substitute training method (DaST) to obtain substitute models for adversarial black-box attacks.
To achieve this, DaST utilizes specially designed generative adversarial networks (GANs) to train the substitute models.
Experiments demonstrate the substitute models can achieve competitive performance compared with the baseline models.
arXiv Detail & Related papers (2020-03-28T04:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.