Attention is All They Need: Exploring the Media Archaeology of the Computer Vision Research Paper
- URL: http://arxiv.org/abs/2209.11200v3
- Date: Tue, 27 Aug 2024 13:44:11 GMT
- Title: Attention is All They Need: Exploring the Media Archaeology of the Computer Vision Research Paper
- Authors: Samuel Goree, Gabriel Appleby, David Crandall, Norman Su,
- Abstract summary: We study changes in computer vision over the past decade, as the deep learning revolution has driven unprecedented growth in the discipline.
Our analysis focuses on the research attention economy: how research paper elements contribute towards advertising, measuring, and disseminating an increasingly commodified "contribution"
- Score: 4.968848569103028
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Research papers, in addition to textual documents, are a designed interface through which researchers communicate. Recently, rapid growth has transformed that interface in many fields of computing. In this work, we examine the effects of this growth from a media archaeology perspective, through the changes to figures and tables in research papers. Specifically, we study these changes in computer vision over the past decade, as the deep learning revolution has driven unprecedented growth in the discipline. We ground our investigation through interviews with veteran researchers spanning computer vision, graphics, and visualization. Our analysis focuses on the research attention economy: how research paper elements contribute towards advertising, measuring, and disseminating an increasingly commodified "contribution." Through this work, we seek to motivate future discussion surrounding the design of both the research paper itself as well as the larger sociotechnical research publishing system, including tools for finding, reading, and writing research papers.
Related papers
- SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - Forecasting high-impact research topics via machine learning on evolving
knowledge graphs [0.8158530638728501]
We show how to predict the impact of onsets of ideas that have never been published by researchers.
We developed a large evolving knowledge graph built from more than 21 million scientific papers.
arXiv Detail & Related papers (2024-02-13T18:09:38Z) - A Comprehensive Study of Groundbreaking Machine Learning Research:
Analyzing highly cited and impactful publications across six decades [1.6442870218029522]
Machine learning (ML) has emerged as a prominent field of research in computer science and other related fields.
It is crucial to understand the landscape of highly cited publications to identify key trends, influential authors, and significant contributions made thus far.
arXiv Detail & Related papers (2023-08-01T21:43:22Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
We describe the Semantic Reader Project, a effort across multiple institutions to explore automatic creation of dynamic reading interfaces for research papers.
Ten prototype interfaces have been developed and more than 300 participants and real-world users have shown improved reading experiences.
We structure this paper around challenges scholars and the public face when reading research papers.
arXiv Detail & Related papers (2023-03-25T02:47:09Z) - Deep Learning to See: Towards New Foundations of Computer Vision [88.69805848302266]
This book criticizes the supposed scientific progress in the field of computer vision.
It proposes the investigation of vision within the framework of information-based laws of nature.
arXiv Detail & Related papers (2022-06-30T15:20:36Z) - Researching Alignment Research: Unsupervised Analysis [14.699455652461726]
AI alignment research is dedicated to ensuring that artificial intelligence (AI) benefits humans.
In this project, we collected and analyzed existing AI alignment research.
We found that the field is growing quickly, with several subfields emerging in parallel.
arXiv Detail & Related papers (2022-06-06T18:24:17Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - Threat of Adversarial Attacks on Deep Learning in Computer Vision:
Survey II [86.51135909513047]
Deep Learning is vulnerable to adversarial attacks that can manipulate its predictions.
This article reviews the contributions made by the computer vision community in adversarial attacks on deep learning.
It provides definitions of technical terminologies for non-experts in this domain.
arXiv Detail & Related papers (2021-08-01T08:54:47Z) - Industry and Academic Research in Computer Vision [5.634825161148484]
This work aims to study the dynamic between research in the industry and academia in computer vision.
The results are demonstrated on a set of top-5 vision conferences that are representative of the field.
arXiv Detail & Related papers (2021-07-10T20:09:52Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
We introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature.
We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.
arXiv Detail & Related papers (2020-10-30T19:12:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.