論文の概要: VToonify: Controllable High-Resolution Portrait Video Style Transfer
- arxiv url: http://arxiv.org/abs/2209.11224v2
- Date: Fri, 23 Sep 2022 08:01:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 10:46:21.343495
- Title: VToonify: Controllable High-Resolution Portrait Video Style Transfer
- Title(参考訳): VToonify:制御可能な高解像度画像スタイル転送
- Authors: Shuai Yang, Liming Jiang, Ziwei Liu, Chen Change Loy
- Abstract要約: 制御可能な高解像度のポートレートビデオスタイル転送のための新しいVToonifyフレームワークを提案する。
エンコーダによって抽出されたマルチスケールのコンテンツ特徴に基づいて,StyleGANの中間層と高解像度層を利用して芸術的な肖像画を描画する。
我々のフレームワークは、既存のStyleGANベースの画像トーン化モデルと互換性があり、それらをビデオトーン化に拡張し、色と強度の柔軟なスタイル制御のためにこれらのモデルの魅力的な特徴を継承する。
- 参考スコア(独自算出の注目度): 103.54337984566877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating high-quality artistic portrait videos is an important and
desirable task in computer graphics and vision. Although a series of successful
portrait image toonification models built upon the powerful StyleGAN have been
proposed, these image-oriented methods have obvious limitations when applied to
videos, such as the fixed frame size, the requirement of face alignment,
missing non-facial details and temporal inconsistency. In this work, we
investigate the challenging controllable high-resolution portrait video style
transfer by introducing a novel VToonify framework. Specifically, VToonify
leverages the mid- and high-resolution layers of StyleGAN to render
high-quality artistic portraits based on the multi-scale content features
extracted by an encoder to better preserve the frame details. The resulting
fully convolutional architecture accepts non-aligned faces in videos of
variable size as input, contributing to complete face regions with natural
motions in the output. Our framework is compatible with existing StyleGAN-based
image toonification models to extend them to video toonification, and inherits
appealing features of these models for flexible style control on color and
intensity. This work presents two instantiations of VToonify built upon Toonify
and DualStyleGAN for collection-based and exemplar-based portrait video style
transfer, respectively. Extensive experimental results demonstrate the
effectiveness of our proposed VToonify framework over existing methods in
generating high-quality and temporally-coherent artistic portrait videos with
flexible style controls.
- Abstract(参考訳): 高品質なポートレートビデオの生成は、コンピュータグラフィックスとビジョンにおいて重要かつ望ましいタスクである。
強力なStyleGAN上に構築された一連のポートレート画像トーン化モデルが提案されているが、これらの画像指向手法は、固定フレームサイズ、顔アライメントの要件、非顔的詳細の欠如、時間的不整合など、ビデオに適用する場合に明らかな制限がある。
本稿では,新しいVToonifyフレームワークを導入することで,高精細度高精細度映像の転送を実現する。
具体的には、vtoonifyはstyleganの中・高分解能のレイヤーを利用して、エンコーダによって抽出されたマルチスケールのコンテンツ特徴に基づいて高品質のポートレートをレンダリングし、フレームの詳細をよりよく保存する。
結果として生じる完全畳み込みアーキテクチャは、入力として可変サイズのビデオの非整合顔を受け入れ、出力に自然な動きを持つ完全な顔領域に寄与する。
我々のフレームワークは、既存のStyleGANベースの画像トーン化モデルと互換性があり、それらをビデオトーン化に拡張し、色と強度の柔軟なスタイル制御のためにこれらのモデルの魅力的な特徴を継承する。
本研究は,Toonify と DualStyleGAN をベースとした2種類のVToonify を,コレクションベースおよび模範的なポートレートビデオスタイルの転送を行う。
提案するvtoonifyフレームワークが,従来手法と比較して,フレキシブルなスタイル制御による高品質・時限コヒーレントなポートレートビデオの生成に有効であることを示す。
関連論文リスト
- WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
ビデオ仮想トライオンは、衣料品のアイデンティティを維持し、ソースビデオにおける人のポーズと身体の形に適応する現実的なシーケンスを生成することを目的としている。
従来の画像ベースの手法は、ワープとブレンディングに依存しており、複雑な人間の動きや閉塞に苦しむ。
衣料品の説明や人間の動きを条件とした映像生成のプロセスとして,映像試行を再認識する。
私たちのソリューションであるWildVidFitは、画像ベースで制御された拡散モデルを用いて、一段階の合理化を図っている。
論文 参考訳(メタデータ) (2024-07-15T11:21:03Z) - VividPose: Advancing Stable Video Diffusion for Realistic Human Image Animation [79.99551055245071]
時間的安定性を向上するエンドツーエンドパイプラインであるVividPoseを提案する。
識別対応外見制御器は、他の外見の詳細を損なうことなく、追加の顔情報を統合する。
SMPL-Xからの高密度レンダリングマップとスパーススケルトンマップの両方を利用する幾何対応のポーズコントローラ。
VividPoseは、提案したWildデータセットに優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-05-28T13:18:32Z) - Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation [93.18163456287164]
本稿では,動画に画像モデルを適用するための新しいテキスト誘導型動画翻訳フレームワークを提案する。
我々のフレームワークは,グローバルなスタイルと局所的なテクスチャの時間的一貫性を低コストで実現している。
論文 参考訳(メタデータ) (2023-06-13T17:52:23Z) - Imagen Video: High Definition Video Generation with Diffusion Models [64.06483414521222]
Imagen Videoは、ビデオ拡散モデルのカスケードに基づくテキスト条件付きビデオ生成システムである。
我々は高精細度ビデオを生成することができるが、高い可制御性と世界的知識を持つ画像n Videoを見いだす。
論文 参考訳(メタデータ) (2022-10-05T14:41:38Z) - StyleFaceV: Face Video Generation via Decomposing and Recomposing
Pretrained StyleGAN3 [43.43545400625567]
そこで我々は,鮮明な動きを持つ高忠実度ID保存顔ビデオを生成するStyleFaceVというフレームワークを提案する。
我々の中核となる洞察は、外観を分解し、情報を合成し、それらをStyleGAN3の潜在空間に再分解することで、安定的でダイナミックな結果を生み出すことである。
論文 参考訳(メタデータ) (2022-08-16T17:47:03Z) - StyleHEAT: One-Shot High-Resolution Editable Talking Face Generation via
Pretrained StyleGAN [49.917296433657484]
ワンショット・トーキング・フェイス・ジェネレーションは、任意のポートレート画像から高品質なトーキング・フェイス・ビデオを合成することを目的としている。
本研究では,事前学習したStyleGANの潜在特徴空間について検討し,優れた空間変換特性について考察する。
本稿では,事前学習したStyleGANをベースとした,強力な機能セットを実現する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-08T12:06:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。