Segmentation-based Information Extraction and Amalgamation in Fundus
Images for Glaucoma Detection
- URL: http://arxiv.org/abs/2209.11456v1
- Date: Fri, 23 Sep 2022 07:39:17 GMT
- Title: Segmentation-based Information Extraction and Amalgamation in Fundus
Images for Glaucoma Detection
- Authors: Yanni Wang, Gang Yang, Dayong Ding, Jianchun Zao
- Abstract summary: The relationship between fundus images and segmentation masks in terms of joint decision-making in glaucoma assessment is rarely explored.
We propose a novel segmentation-based information extraction and amalgamation method for the task of glaucoma detection.
- Score: 3.5426952641410496
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Glaucoma is a severe blinding disease, for which automatic detection methods
are urgently needed to alleviate the scarcity of ophthalmologists. Many works
have proposed to employ deep learning methods that involve the segmentation of
optic disc and cup for glaucoma detection, in which the segmentation process is
often considered merely as an upstream sub-task. The relationship between
fundus images and segmentation masks in terms of joint decision-making in
glaucoma assessment is rarely explored. We propose a novel segmentation-based
information extraction and amalgamation method for the task of glaucoma
detection, which leverages the robustness of segmentation masks without
disregarding the rich information in the original fundus images. Experimental
results on both private and public datasets demonstrate that our proposed
method outperforms all models that utilize solely either fundus images or
masks.
Related papers
- Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
This paper tackles the challenges for vision modality from a multimodal point of view.
We propose Cross-modal Guidance (CMG) to tackle the redundant information issue and sparse space issue.
To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality.
arXiv Detail & Related papers (2023-10-04T13:44:56Z) - AMLP:Adaptive Masking Lesion Patches for Self-supervised Medical Image
Segmentation [67.97926983664676]
Self-supervised masked image modeling has shown promising results on natural images.
However, directly applying such methods to medical images remains challenging.
We propose a novel self-supervised medical image segmentation framework, Adaptive Masking Lesion Patches (AMLP)
arXiv Detail & Related papers (2023-09-08T13:18:10Z) - Automatic detection of glaucoma via fundus imaging and artificial
intelligence: A review [0.4215938932388722]
Glaucoma is a leading cause of irreversible vision impairment globally.
Fundus imaging is non-invasive and low-cost.
Can artificial intelligence automatically find the boundaries of the optic cup and disc.
arXiv Detail & Related papers (2022-04-12T07:47:13Z) - JOINED : Prior Guided Multi-task Learning for Joint Optic Disc/Cup
Segmentation and Fovea Detection [1.2250035750661867]
We present a novel method, named JOINED, for prior guided multi-task learning for joint OD/OC segmentation and fovea detection.
Our proposed JOINED pipeline consists of a coarse stage and a fine stage.
Experimental results reveal that our proposed JOINED outperforms existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-01T13:47:48Z) - GAMMA Challenge:Glaucoma grAding from Multi-Modality imAges [48.98620387924817]
We set up the Glaucoma grAding from Multi-Modality imAges (GAMMA) Challenge to encourage the development of fundus & OCT-based glaucoma grading.
The primary task of the challenge is to grade glaucoma from both the 2D fundus images and 3D OCT scanning volumes.
We have publicly released a glaucoma annotated dataset with both 2D fundus color photography and 3D OCT volumes, which is the first multi-modality dataset for glaucoma grading.
arXiv Detail & Related papers (2022-02-14T06:54:15Z) - COROLLA: An Efficient Multi-Modality Fusion Framework with Supervised
Contrastive Learning for Glaucoma Grading [1.2250035750661867]
We propose an efficient multi-modality supervised contrastive learning framework, named COROLLA, for glaucoma grading.
We employ supervised contrastive learning to increase our models' discriminative power with better convergence.
On the GAMMA dataset, our COROLLA framework achieves overwhelming glaucoma grading performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2022-01-11T06:00:51Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
cataract is a common eye disease and one of the leading causes of blindness and vision impairment.
We present a novel algorithm for cataract detection using near-infrared eye images.
Deep learning-based eye segmentation and multitask network classification networks are presented.
arXiv Detail & Related papers (2021-10-06T08:10:28Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
The identification of retinal layer thicknesses serves as an essential task be done for each patient separately.
The elaboration of automated segmentation models has become an important task in the field of medical image processing.
We propose a novel, purely data driven textitgeometric approach to order-constrained 3D OCT retinal cell layer segmentation
arXiv Detail & Related papers (2020-09-10T01:57:53Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.