論文の概要: Leveraging Self-Supervised Training for Unintentional Action Recognition
- arxiv url: http://arxiv.org/abs/2209.11870v1
- Date: Fri, 23 Sep 2022 21:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 15:56:20.270535
- Title: Leveraging Self-Supervised Training for Unintentional Action Recognition
- Title(参考訳): 意図しない行動認識のための自己監督訓練の活用
- Authors: Enea Duka, Anna Kukleva, Bernt Schiele
- Abstract要約: 我々は、アクションが意図的なものから意図しないものへと移行するビデオのポイントを特定したい。
本研究では,動き速度,動き方向,意図しない動作を認識するために,固有バイアスを利用する多段階フレームワークを提案する。
- 参考スコア(独自算出の注目度): 82.19777933440143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unintentional actions are rare occurrences that are difficult to define
precisely and that are highly dependent on the temporal context of the action.
In this work, we explore such actions and seek to identify the points in videos
where the actions transition from intentional to unintentional. We propose a
multi-stage framework that exploits inherent biases such as motion speed,
motion direction, and order to recognize unintentional actions. To enhance
representations via self-supervised training for the task of unintentional
action recognition we propose temporal transformations, called Temporal
Transformations of Inherent Biases of Unintentional Actions (T2IBUA). The
multi-stage approach models the temporal information on both the level of
individual frames and full clips. These enhanced representations show strong
performance for unintentional action recognition tasks. We provide an extensive
ablation study of our framework and report results that significantly improve
over the state-of-the-art.
- Abstract(参考訳): 意図しない行動は、正確に定義するのが困難で、行動の時間的文脈に大きく依存する稀な出来事である。
本研究では,意図的から意図的へ行動が移行するビデオのポイントを探索し,そのポイントを特定する。
本研究では,動き速度,動き方向,意図しない動作を認識するために,固有バイアスを利用する多段階フレームワークを提案する。
非意図的行動認識の課題に対する自己指導的訓練による表現を高めるために,非意図的行動の因果的バイアスの時間変換(T2IBUA)と呼ばれる時間変換を提案する。
多段階アプローチは、個々のフレームとフルクリップの両方の時間的情報をモデル化する。
これらの拡張表現は意図しない行動認識タスクに対して強い性能を示す。
我々は,我々の枠組みと報告結果の広範なアブレーション研究を行い,最新技術よりも大幅に改善した。
関連論文リスト
- No More Shortcuts: Realizing the Potential of Temporal Self-Supervision [69.59938105887538]
本稿では、フレームレベルの認識タスクではなく、フレームレベルの認識タスクとして、時間的自己監督のより困難な再構築を提案する。
我々は、より困難なフレームレベルのタスクの定式化とショートカットの削除が、時間的自己監督によって学習された特徴の質を大幅に改善することを示した。
論文 参考訳(メタデータ) (2023-12-20T13:20:31Z) - Action Sensitivity Learning for Temporal Action Localization [35.65086250175736]
本稿では,時間的行動ローカライゼーションの課題に取り組むために,行動感性学習フレームワーク(ASL)を提案する。
まず、クラスレベルでのアクション感度とインスタンスレベルでのアクション感度を学習するための軽量なアクション感度評価器を導入する。
各フレームの動作感度に基づいて、アクション認識フレームを正のペアとしてサンプリングし、アクション非関連フレームを除去する機能を強化するために、アクション感性コントラスト損失を設計する。
論文 参考訳(メタデータ) (2023-05-25T04:19:14Z) - DIR-AS: Decoupling Individual Identification and Temporal Reasoning for
Action Segmentation [84.78383981697377]
完全な教師付きアクションセグメンテーションは、高密度アノテーションによるフレームワイドアクション認識に作用し、しばしば過剰なセグメンテーションの問題に悩まされる。
本研究では, 時間的ピラミッド拡張と時間的ピラミッドプールを併用して, 効率的なマルチスケールアテンションを実現するため, 新たなローカル・グローバルアテンション機構を開発した。
GTEAでは82.8%(+2.6%)、Breakfastでは74.7%(+1.2%)の精度を実現し,本手法の有効性を示した。
論文 参考訳(メタデータ) (2023-04-04T20:27:18Z) - Tragedy Plus Time: Capturing Unintended Human Activities from
Weakly-labeled Videos [31.1632730473261]
W-Oopsは2100の意図しない人間のアクションビデオで構成され、44のゴール指向と30の意図しないビデオレベルのアクティビティラベルが人間のアノテーションを通じて収集されている。
本稿では,映像中の意図しない時間領域だけでなく,目標指向の局所化のための弱教師付きアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-28T14:56:43Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
自己制御学習(SRL)は、中間表現を連続的に制御し、現在のタイムスタンプのフレームにおける新しい情報を強調する表現を作り出すことを目的としている。
SRLは2つのエゴセントリックなビデオデータセットと2つの第三者のビデオデータセットにおいて、既存の最先端技術よりも大幅に優れています。
論文 参考訳(メタデータ) (2021-11-23T03:29:18Z) - CLTA: Contents and Length-based Temporal Attention for Few-shot Action
Recognition [2.0349696181833337]
本稿では,個々のビデオに対して時間的注意をカスタマイズしたコンテンツと長さに基づく時間的注意モデルを提案する。
通常のソフトマックス分類器で微調整されていないバックボーンであっても、最先端のアクション認識と同等あるいはそれ以上の結果が得られる。
論文 参考訳(メタデータ) (2021-03-18T23:40:28Z) - Intra- and Inter-Action Understanding via Temporal Action Parsing [118.32912239230272]
本研究では,スポーツビデオにサブアクションの手動アノテーションを付加した新しいデータセットを構築し,その上に時間的行動解析を行う。
スポーツ活動は通常、複数のサブアクションから構成されており、このような時間構造に対する意識は、行動認識に有益であることを示す。
また,時間的解析手法を多数検討し,そのラベルを知らずにトレーニングデータからサブアクションをマイニングできる改良手法を考案した。
論文 参考訳(メタデータ) (2020-05-20T17:45:18Z) - Inferring Temporal Compositions of Actions Using Probabilistic Automata [61.09176771931052]
本稿では,動作の時間的構成を意味正規表現として表現し,確率的オートマトンを用いた推論フレームワークを提案する。
我々のアプローチは、長い範囲の複雑なアクティビティを、順序のないアトミックアクションのセットとして予測するか、自然言語文を使ってビデオを取得するという既存の研究とは異なる。
論文 参考訳(メタデータ) (2020-04-28T00:15:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。