Learning Chess With Language Models and Transformers
- URL: http://arxiv.org/abs/2209.11902v1
- Date: Sat, 24 Sep 2022 01:22:59 GMT
- Title: Learning Chess With Language Models and Transformers
- Authors: Michael DeLeo, Erhan Guven
- Abstract summary: Representing a board game and its positions by text-based notation enables the possibility of NLP applications.
BERT models, first to the simple Nim game to analyze its performance in the presence of noise in a setup of a few-shot learning architecture.
Model practically learns the rules of the chess game and can survive games against Stockfish at a category-A rating level.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representing a board game and its positions by text-based notation enables
the possibility of NLP applications. Language models, can help gain insight
into a variety of interesting problems such as unsupervised learning rules of a
game, detecting player behavior patterns, player attribution, and ultimately
learning the game to beat state of the art. In this study, we applied BERT
models, first to the simple Nim game to analyze its performance in the presence
of noise in a setup of a few-shot learning architecture. We analyzed the model
performance via three virtual players, namely Nim Guru, Random player, and
Q-learner. In the second part, we applied the game learning language model to
the chess game, and a large set of grandmaster games with exhaustive
encyclopedia openings. Finally, we have shown that model practically learns the
rules of the chess game and can survive games against Stockfish at a category-A
rating level.
Related papers
- Instruction-Driven Game Engine: A Poker Case Study [53.689520884467065]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game descriptions and generate game-play processes.
We train the IDGE in a curriculum manner that progressively increases its exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, which not only supports a wide range of poker variants but also allows for highly individualized new poker games through natural language inputs.
arXiv Detail & Related papers (2024-10-17T11:16:27Z) - Learning the Latent Rules of a Game from Data: A Chess Story [0.0]
We show that 28M and 125M parameter pretrained small language models (SLMs) can be instruction fine-tuned with 1,000-to-1,000,000 examples.
We also explore the impact of successive language model fine-tuning epochs on improved outcomes.
arXiv Detail & Related papers (2024-10-03T12:19:49Z) - GAVEL: Generating Games Via Evolution and Language Models [40.896938709468465]
We explore the generation of novel games in the Ludii game description language.
We train a model that intelligently mutates and recombines games and mechanics expressed as code.
A sample of the generated games are available to play online through the Ludii portal.
arXiv Detail & Related papers (2024-07-12T16:08:44Z) - Show, Don't Tell: Evaluating Large Language Models Beyond Textual Understanding with ChildPlay [0.0]
We use games like Tic-Tac-Toe, Connect Four, and Battleship to assess strategic thinking and decision-making.
Despite their proficiency on standard benchmarks, GPT-3.5 and GPT-4's abilities to play and reason about fully observable games without pre-training is mediocre.
arXiv Detail & Related papers (2024-07-12T14:17:26Z) - Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game rules.
We train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, a universally cherished card game.
arXiv Detail & Related papers (2024-03-30T08:02:16Z) - Emergent World Models and Latent Variable Estimation in Chess-Playing Language Models [0.0]
We train a GPT model on Othello games and find that the model learned an internal representation of the board state.
We extend this work into the more complex domain of chess, training on real games and investigating our model's internal representations.
Unlike Li et al.'s prior synthetic dataset approach, our analysis finds that the model also learns to estimate latent variables like player skill to better predict the next character.
arXiv Detail & Related papers (2024-03-21T18:53:23Z) - Visually Grounded Language Learning: a review of language games,
datasets, tasks, and models [60.2604624857992]
Many Vision+Language (V+L) tasks have been defined with the aim of creating models that can ground symbols in the visual modality.
In this work, we provide a systematic literature review of several tasks and models proposed in the V+L field.
arXiv Detail & Related papers (2023-12-05T02:17:29Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - Learning Chess Blindfolded: Evaluating Language Models on State Tracking [69.3794549747725]
We consider the task of language modeling for the game of chess.
Unlike natural language, chess notations describe a simple, constrained, and deterministic domain.
We find that transformer language models can learn to track pieces and predict legal moves with high accuracy when trained solely on move sequences.
arXiv Detail & Related papers (2021-02-26T01:16:23Z) - Keep CALM and Explore: Language Models for Action Generation in
Text-based Games [27.00685301984832]
We propose the Contextual Action Language Model (CALM) to generate a compact set of action candidates at each game state.
We combine CALM with a reinforcement learning agent which re-ranks the generated action candidates to maximize in-game rewards.
arXiv Detail & Related papers (2020-10-06T17:36:29Z) - Model-Based Reinforcement Learning for Atari [89.3039240303797]
We show how video prediction models can enable agents to solve Atari games with fewer interactions than model-free methods.
Our experiments evaluate SimPLe on a range of Atari games in low data regime of 100k interactions between the agent and the environment.
arXiv Detail & Related papers (2019-03-01T15:40:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.