論文の概要: PL-EVIO: Robust Monocular Event-based Visual Inertial Odometry with
Point and Line Features
- arxiv url: http://arxiv.org/abs/2209.12160v2
- Date: Tue, 26 Sep 2023 09:46:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 18:25:02.852565
- Title: PL-EVIO: Robust Monocular Event-based Visual Inertial Odometry with
Point and Line Features
- Title(参考訳): PL-EVIO:点と線の特徴を持つロバストな単眼イベントベース視覚慣性オドメトリー
- Authors: Weipeng Guan, Peiyu Chen, Yuhan Xie, Peng Lu
- Abstract要約: イベントカメラは、フレームレートが固定された強度画像の代わりにピクセルレベルの照明変化をキャプチャするモーションアクティベートセンサーである。
本稿では,ロバストで高精度でリアルタイムな単眼イベントベース視覚慣性オドメトリー(VIO)法を提案する。
- 参考スコア(独自算出の注目度): 3.6355269783970394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras are motion-activated sensors that capture pixel-level
illumination changes instead of the intensity image with a fixed frame rate.
Compared with the standard cameras, it can provide reliable visual perception
during high-speed motions and in high dynamic range scenarios. However, event
cameras output only a little information or even noise when the relative motion
between the camera and the scene is limited, such as in a still state. While
standard cameras can provide rich perception information in most scenarios,
especially in good lighting conditions. These two cameras are exactly
complementary. In this paper, we proposed a robust, high-accurate, and
real-time optimization-based monocular event-based visual-inertial odometry
(VIO) method with event-corner features, line-based event features, and
point-based image features. The proposed method offers to leverage the
point-based features in the nature scene and line-based features in the
human-made scene to provide more additional structure or constraints
information through well-design feature management. Experiments in the public
benchmark datasets show that our method can achieve superior performance
compared with the state-of-the-art image-based or event-based VIO. Finally, we
used our method to demonstrate an onboard closed-loop autonomous quadrotor
flight and large-scale outdoor experiments. Videos of the evaluations are
presented on our project website: https://b23.tv/OE3QM6j
- Abstract(参考訳): イベントカメラは、フレームレートが固定された強度画像の代わりにピクセルレベルの照明変化をキャプチャするモーションアクティベートセンサーである。
標準のカメラと比較すると、高速動作やダイナミックレンジのシナリオにおいて、信頼性の高い視覚知覚を提供することができる。
しかし、イベントカメラは、静止状態のように、カメラとシーンの間の相対的な動きが制限されている場合にのみ、わずかな情報やノイズを出力する。
標準的なカメラは、ほとんどのシナリオ、特に良好な照明条件において、リッチな知覚情報を提供できる。
この2つのカメラはまさに補完的です。
本稿では,イベントコーン機能,ラインベースイベント機能,点ベース画像機能を備えた,堅牢で高精度かつリアルタイムな単眼イベントベース視覚慣性オドメトリー(VIO)手法を提案する。
提案手法では,自然シーンにおけるポイントベース特徴と人造シーンにおけるラインベース特徴を活用し,設計の充実した機能管理を通じて,さらに追加的な構造や制約情報を提供する。
提案手法は,最新の画像ベースやイベントベースVIOと比較して,優れた性能が得られることを示す。
最後に,本手法を用いて,クローズドループ自律四極子飛行と大規模屋外実験を行った。
評価のビデオは、プロジェクトのWebサイト(https://b23.tv/OE3QM6j)で紹介されています。
関連論文リスト
- EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
生物学的ビジョンにインスパイアされたイベントカメラは、時間分解能の高い画素の強度を非同期に記録する。
本稿では,イベントカメラの利点を3DGSにシームレスに統合するイベント支援フリートラジェクトリ3DGSを提案する。
提案手法を,パブリックタンクとテンプルのベンチマークと,新たに収集した実世界のデータセットであるRealEv-DAVISで評価した。
論文 参考訳(メタデータ) (2024-10-20T13:44:24Z) - Motion Segmentation for Neuromorphic Aerial Surveillance [42.04157319642197]
イベントカメラは優れた時間分解能、優れたダイナミックレンジ、最小限の電力要件を提供する。
固定間隔で冗長な情報をキャプチャする従来のフレームベースのセンサーとは異なり、イベントカメラは画素レベルの明るさ変化を非同期に記録する。
本稿では,イベントデータと光フロー情報の両方に自己監督型視覚変換器を利用する動き分割手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T04:36:13Z) - Self-supervised Event-based Monocular Depth Estimation using Cross-modal
Consistency [18.288912105820167]
EMoDepth という自己教師型イベントベース単眼深度推定フレームワークを提案する。
EMoDepthは、ピクセル座標内のイベントに整合した強度フレームからのクロスモーダル一貫性を使用して、トレーニングプロセスを制約する。
推論では、単分子深度予測にはイベントのみを使用する。
論文 参考訳(メタデータ) (2024-01-14T07:16:52Z) - EventAid: Benchmarking Event-aided Image/Video Enhancement Algorithms
with Real-captured Hybrid Dataset [55.12137324648253]
イベントカメラは、ダイナミックレンジとセンサーの速度で従来のフレームベースの撮像センサーよりも有利な、新興のイメージング技術である。
本稿では,5つのイベント支援画像と映像強調タスクに焦点を当てる。
論文 参考訳(メタデータ) (2023-12-13T15:42:04Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
イベントカメラは、低レイテンシと高ダイナミックレンジのために、ロボット知覚の新しい可能性を開く。
イベントベースビジュアル・オドメトリー(VO)に焦点をあてる
動作最適化のバックエンドとして非同期構造を提案する。
論文 参考訳(メタデータ) (2022-03-02T11:28:47Z) - Event Guided Depth Sensing [50.997474285910734]
バイオインスパイアされたイベントカメラ駆動深度推定アルゴリズムを提案する。
提案手法では,イベントカメラが検出したシーン活動に応じて,関心領域を高密度に照明する。
シミュレーションされた自律運転シーケンスと実際の屋内環境におけるアプローチの実現可能性を示す。
論文 参考訳(メタデータ) (2021-10-20T11:41:11Z) - Moving Object Detection for Event-based vision using Graph Spectral
Clustering [6.354824287948164]
移動物体検出は、幅広い応用のためのコンピュータビジョンにおける中心的な話題となっている。
イベントベースデータにおける移動物体検出のための教師なしグラフスペクトルクラスタリング手法を提案する。
さらに,移動物体の最適個数を自動決定する方法について述べる。
論文 参考訳(メタデータ) (2021-09-30T10:19:22Z) - VisEvent: Reliable Object Tracking via Collaboration of Frame and Event
Flows [93.54888104118822]
このタスクには現実的でスケールしたデータセットがないため、大規模なVisible-Eventベンチマーク(VisEventと呼ぶ)を提案する。
私たちのデータセットは、低照度、高速、背景乱雑なシナリオ下でキャプチャされた820のビデオペアで構成されています。
VisEventに基づいて、イベントフローをイベントイメージに変換し、30以上のベースラインメソッドを構築します。
論文 参考訳(メタデータ) (2021-08-11T03:55:12Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z) - Event-based Stereo Visual Odometry [42.77238738150496]
ステレオ・イベント・ベースのカメラ・リグが取得したデータから視覚計測の問題に対する解決策を提案する。
我々は,シンプルかつ効率的な表現を用いて,ステレオイベントベースのデータの時間的一貫性を最大化する。
論文 参考訳(メタデータ) (2020-07-30T15:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。