Deep generative model super-resolves spatially correlated multiregional
climate data
- URL: http://arxiv.org/abs/2209.12433v2
- Date: Sat, 15 Apr 2023 13:14:47 GMT
- Title: Deep generative model super-resolves spatially correlated multiregional
climate data
- Authors: Norihiro Oyama, Noriko N. Ishizaki, Satoshi Koide, and Hiroaki Yoshida
- Abstract summary: We show an adversarial network-based machine learning enables us to correctly reconstruct the inter-regional spatial correlations in downscaling.
The proposed method has a potential application to the inter-regionally consistent assessment of the climate change impact.
We present the outcomes of another variant of the deep generative model-based downscaling approach in which the low-resolution precipitation field is substituted with the pressure field.
- Score: 5.678539713361703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Super-resolving the coarse outputs of global climate simulations, termed
downscaling, is crucial in making political and social decisions on systems
requiring long-term climate change projections. Existing fast super-resolution
techniques, however, have yet to preserve the spatially correlated nature of
climatological data, which is particularly important when we address systems
with spatial expanse, such as the development of transportation infrastructure.
Herein, we show an adversarial network-based machine learning enables us to
correctly reconstruct the inter-regional spatial correlations in downscaling
with high magnification of up to fifty while maintaining pixel-wise statistical
consistency. Direct comparison with the measured meteorological data of
temperature and precipitation distributions reveals that integrating
climatologically important physical information improves the downscaling
performance, which prompts us to call this approach $\pi$SRGAN (Physics
Informed Super-Resolution Generative Adversarial Network). The proposed method
has a potential application to the inter-regionally consistent assessment of
the climate change impact. Additionally, we present the outcomes of another
variant of the deep generative model-based downscaling approach in which the
low-resolution precipitation field is substituted with the pressure field,
referred to as $\psi$SRGAN (Precipitation Source Inaccessible SRGAN).
Remarkably, this method demonstrates unexpectedly good downscaling performance
for the precipitation field.
Related papers
- Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
Given coarser-resolution projections from global climate models or satellite data, the downscaling problem aims to estimate finer-resolution regional climate data.
This problem is societally crucial for effective adaptation, mitigation, and resilience against significant risks from climate change.
We propose a novel Kriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM) to capture spatial variability while preserving fine-scale features.
arXiv Detail & Related papers (2024-10-21T04:24:10Z) - Dynamical-generative downscaling of climate model ensembles [13.376226374728917]
We propose a novel approach combining dynamical downscaling with generative artificial intelligence to reduce the cost and improve the uncertainty estimates of downscaled climate projections.
In our framework, an RCM dynamically downscales ESM output to an intermediate resolution, followed by a generative diffusion model that further refines the resolution to the target scale.
arXiv Detail & Related papers (2024-10-02T17:31:01Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Cluster-Segregate-Perturb (CSP): A Model-agnostic Explainability Pipeline for Spatiotemporal Land Surface Forecasting Models [5.586191108738564]
This paper introduces a pipeline that integrates principles from both perturbation-based explainability techniques like LIME and global marginal explainability like PDP.
The proposed pipeline simplifies the undertaking of diverse investigative analyses, such as marginal sensitivity analysis, marginal correlation analysis, lag analysis, etc., on complex land surface forecasting models.
arXiv Detail & Related papers (2024-08-12T04:29:54Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Generative Adversarial Models for Extreme Geospatial Downscaling [0.0]
This paper describes a conditional GAN-based geospatial downscaling method that can accommodate very high scaling factors.
The method explicitly considers the uncertainty inherent to the downscaling process that tends to be ignored in existing methods.
It produces a multitude of plausible high-resolution samples instead of one single deterministic result.
arXiv Detail & Related papers (2024-02-21T18:25:04Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
We present auxiliary informed-temporal neural architecture for statistical downscaling.
Current study performs daily downscaling of precipitation variable from an ESM output at 1.15 degrees (115 km) to 0.25 degrees (25 km) over the world's most climatically diversified country, India.
arXiv Detail & Related papers (2020-09-23T17:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.