Generative Adversarial Models for Extreme Geospatial Downscaling
- URL: http://arxiv.org/abs/2402.14049v2
- Date: Wed, 7 Aug 2024 17:09:10 GMT
- Title: Generative Adversarial Models for Extreme Geospatial Downscaling
- Authors: Guiye Li, Guofeng Cao,
- Abstract summary: This paper describes a conditional GAN-based geospatial downscaling method that can accommodate very high scaling factors.
The method explicitly considers the uncertainty inherent to the downscaling process that tends to be ignored in existing methods.
It produces a multitude of plausible high-resolution samples instead of one single deterministic result.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Addressing the challenges of climate change requires accurate and high-resolution mapping of geospatial data, especially climate and weather variables. However, many existing geospatial datasets, such as the gridded outputs of the state-of-the-art numerical climate models (e.g., general circulation models), are only available at very coarse spatial resolutions due to the model complexity and extremely high computational demand. Deep-learning-based methods, particularly generative adversarial networks (GANs) and their variants, have proved effective for refining natural images and have shown great promise in improving geospatial datasets. This paper describes a conditional GAN-based stochastic geospatial downscaling method that can accommodates very high scaling factors. Compared to most existing methods, the method can generate high-resolution accurate climate datasets from very low-resolution inputs. More importantly, the method explicitly considers the uncertainty inherent to the downscaling process that tends to be ignored in existing methods. Given an input, the method can produce a multitude of plausible high-resolution samples instead of one single deterministic result. These samples allow for an empirical exploration and inferences of model uncertainty and robustness. With a case study of gridded climate datasets (wind velocity and solar irradiance), we demonstrate the performances of the framework in downscaling tasks with large scaling factors (up to $64\times$) and highlight the advantages of the framework with a comprehensive comparison with commonly used and most recent downscaling methods, including area-to-point (ATP) kriging, deep image prior (DIP), enhanced super-resolution generative adversarial networks (ESRGAN), physics-informed resolution-enhancing GAN (PhIRE GAN), and an efficient diffusion model for remote sensing image super-resolution (EDiffSR).
Related papers
- Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
Given coarser-resolution projections from global climate models or satellite data, the downscaling problem aims to estimate finer-resolution regional climate data.
This problem is societally crucial for effective adaptation, mitigation, and resilience against significant risks from climate change.
We propose a novel Kriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM) to capture spatial variability while preserving fine-scale features.
arXiv Detail & Related papers (2024-10-21T04:24:10Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
Scientific research often seeks to understand the causal structure underlying high-level variables in a system.
Scientists typically collect low-level measurements, such as geographically distributed temperature readings.
We propose a differentiable method, Causal Discovery with Single-parent Decoding, that simultaneously learns the underlying latents and a causal graph over them.
arXiv Detail & Related papers (2024-10-09T15:57:50Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
This paper presents a deep generative model for downscaling climate data, specifically precipitation on a regional scale.
We employ a denoising diffusion probabilistic model conditioned on multiple LR climate variables.
Our results demonstrate significant improvements over existing baselines, underscoring the effectiveness of the conditional diffusion model in downscaling climate data.
arXiv Detail & Related papers (2023-12-12T09:39:52Z) - Contrastive Learning for Climate Model Bias Correction and
Super-Resolution [0.0]
Post-processing is needed to make accurate estimates of local climate risk.
Here we propose an alternative approach to this challenge based on a combination of image super resolution (SR) and contrastive learning generative adversarial networks (GANs)
We find that our model successfully reaches a spatial resolution double that of NASA's product while also achieving comparable or improved levels of bias correction in both daily precipitation and temperature.
arXiv Detail & Related papers (2022-11-10T19:45:17Z) - Deep generative model super-resolves spatially correlated multiregional
climate data [5.678539713361703]
We show an adversarial network-based machine learning enables us to correctly reconstruct the inter-regional spatial correlations in downscaling.
The proposed method has a potential application to the inter-regionally consistent assessment of the climate change impact.
We present the outcomes of another variant of the deep generative model-based downscaling approach in which the low-resolution precipitation field is substituted with the pressure field.
arXiv Detail & Related papers (2022-09-26T05:45:16Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
We propose a novel super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors.
The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions.
The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data.
arXiv Detail & Related papers (2022-02-23T18:57:53Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss)
DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution.
We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models.
arXiv Detail & Related papers (2022-01-04T08:30:09Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.