Power System Anomaly Detection and Classification Utilizing WLS-EKF
State Estimation and Machine Learning
- URL: http://arxiv.org/abs/2209.12629v1
- Date: Mon, 26 Sep 2022 12:24:59 GMT
- Title: Power System Anomaly Detection and Classification Utilizing WLS-EKF
State Estimation and Machine Learning
- Authors: Sajjad Asefi, Mile Mitrovic, Dragan \'Cetenovi\'c, Victor Levi, Elena
Gryazina, Vladimir Terzija
- Abstract summary: Power system state estimation is being faced with different types of anomalies.
These might include bad data caused by gross measurement errors or communication system failures.
Considering power grid as a cyber physical system, state estimation becomes vulnerable to false data injection attacks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Power system state estimation is being faced with different types of
anomalies. These might include bad data caused by gross measurement errors or
communication system failures. Sudden changes in load or generation can be
considered as anomaly depending on the implemented state estimation method.
Additionally, considering power grid as a cyber physical system, state
estimation becomes vulnerable to false data injection attacks. The existing
methods for anomaly classification cannot accurately classify (discriminate
between) the above-mentioned three types of anomalies, especially when it comes
to discrimination between sudden load changes and false data injection attacks.
This paper presents a new algorithm for detecting anomaly presence, classifying
the anomaly type and identifying the origin of the anomaly, i.e., measurements
that contain gross errors in case of bad data, or bus(es) associated with
load(s) experiencing a sudden change, or state variables targeted by false data
injection attack. The algorithm combines analytical and machine learning (ML)
approaches. The first stage exploits an analytical approach to detect anomaly
presence by combining $\chi^2$-test and anomaly detection index. The second
stage utilizes ML for the classification of anomaly type and identification of
its origin, with particular reference to discrimination between sudden load
changes and false data injection attacks. The proposed ML based method is
trained to be independent of the network configuration which eliminates
retraining of the algorithm after network topology changes. The results
obtained by implementing the proposed algorithm on IEEE 14 bus test system
demonstrate the accuracy and effectiveness of the proposed algorithm.
Related papers
- Comprehensive Botnet Detection by Mitigating Adversarial Attacks, Navigating the Subtleties of Perturbation Distances and Fortifying Predictions with Conformal Layers [1.6001193161043425]
Botnets are computer networks controlled by malicious actors that present significant cybersecurity challenges.
This research addresses the sophisticated adversarial manipulations posed by attackers, aiming to undermine machine learning-based botnet detection systems.
We introduce a flow-based detection approach, leveraging machine learning and deep learning algorithms trained on the ISCX and ISOT datasets.
arXiv Detail & Related papers (2024-09-01T08:53:21Z) - Can I trust my anomaly detection system? A case study based on explainable AI [0.4416503115535552]
This case study explores the robustness of an anomaly detection system based on variational autoencoder generative models.
The goal is to get a different perspective on the real performances of anomaly detectors that use reconstruction differences.
arXiv Detail & Related papers (2024-07-29T12:39:07Z) - Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series [1.223779595809275]
State-of-the-art approaches based on deep learning via neural networks achieve outstanding performance at anomaly recognition.
We show that our method has higher training efficiency, outperforms the accuracy of state-of-the-art neural architectures.
arXiv Detail & Related papers (2024-04-15T15:42:12Z) - Anomaly Detection in Power Grids via Context-Agnostic Learning [4.865842426618145]
Given time-series measurement values coming from a fixed set of sensors on the grid, can we identify anomalies in the network topology or measurement data?
Recent data-driven ML techniques have shown promise by using a combination of current and historical data for anomaly detection.
We propose a novel context-aware anomaly detection algorithm, GridCAL, that considers the effect of regular topology and load/generation changes.
arXiv Detail & Related papers (2024-04-11T16:37:01Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Towards an Awareness of Time Series Anomaly Detection Models'
Adversarial Vulnerability [21.98595908296989]
We demonstrate that the performance of state-of-the-art anomaly detection methods is degraded substantially by adding only small adversarial perturbations to the sensor data.
We use different scoring metrics such as prediction errors, anomaly, and classification scores over several public and private datasets.
We demonstrate, for the first time, the vulnerabilities of anomaly detection systems against adversarial attacks.
arXiv Detail & Related papers (2022-08-24T01:55:50Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.