Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series
- URL: http://arxiv.org/abs/2404.09871v4
- Date: Sun, 28 Jul 2024 13:01:17 GMT
- Title: Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series
- Authors: Daniele Meli,
- Abstract summary: State-of-the-art approaches based on deep learning via neural networks achieve outstanding performance at anomaly recognition.
We show that our method has higher training efficiency, outperforms the accuracy of state-of-the-art neural architectures.
- Score: 1.223779595809275
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Online unsupervised detection of anomalies is crucial to guarantee the correct operation of cyber-physical systems and the safety of humans interacting with them. State-of-the-art approaches based on deep learning via neural networks achieve outstanding performance at anomaly recognition, evaluating the discrepancy between a normal model of the system (with no anomalies) and the real-time stream of sensor time series. However, large training data and time are typically required, and explainability is still a challenge to identify the root of the anomaly and implement predictive maintainance. In this paper, we use causal discovery to learn a normal causal graph of the system, and we evaluate the persistency of causal links during real-time acquisition of sensor data to promptly detect anomalies. On two benchmark anomaly detection datasets, we show that our method has higher training efficiency, outperforms the accuracy of state-of-the-art neural architectures and correctly identifies the sources of >10 different anomalies. The code is at https://github.com/Isla-lab/causal_anomaly_detection.
Related papers
- Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Towards an Awareness of Time Series Anomaly Detection Models'
Adversarial Vulnerability [21.98595908296989]
We demonstrate that the performance of state-of-the-art anomaly detection methods is degraded substantially by adding only small adversarial perturbations to the sensor data.
We use different scoring metrics such as prediction errors, anomaly, and classification scores over several public and private datasets.
We demonstrate, for the first time, the vulnerabilities of anomaly detection systems against adversarial attacks.
arXiv Detail & Related papers (2022-08-24T01:55:50Z) - Graph Neural Network-Based Anomaly Detection in Multivariate Time Series [17.414474298706416]
We develop a new way to detect anomalies in high-dimensional time series data.
Our approach combines a structure learning approach with graph neural networks.
We show that our method detects anomalies more accurately than baseline approaches.
arXiv Detail & Related papers (2021-06-13T09:07:30Z) - A Survey on Anomaly Detection for Technical Systems using LSTM Networks [0.0]
Anomalies represent deviations from the intended system operation and can lead to decreased efficiency as well as partial or complete system failure.
In this article, a survey on state-of-the-art anomaly detection using deep neural and especially long short-term memory networks is conducted.
The investigated approaches are evaluated based on the application scenario, data and anomaly types as well as further metrics.
arXiv Detail & Related papers (2021-05-28T13:24:40Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Zero-bias Deep Learning Enabled Quick and Reliable Abnormality Detection
in IoT [18.474662677341012]
This paper integrates zero-bias DNN and Quickest Event Detection algorithms.
It provides a holistic framework for quick and reliable detection of both abnormalities and time-dependent abnormal events.
We demonstrate the effectiveness of the framework using both massive signal records from real-world aviation communication systems and simulated data.
arXiv Detail & Related papers (2021-04-08T03:31:50Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - LSTM for Model-Based Anomaly Detection in Cyber-Physical Systems [4.020523898765404]
Anomaly detection is the task of detecting data which differs from the normal behaviour of a system in a given context.
Long Short-Term Memory (LSTM) neural networks have been shown to be particularly useful to learn time sequences.
We analyse the approach on artificial and real data.
arXiv Detail & Related papers (2020-10-29T15:26:08Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.