Lattice regularizations of $\theta$ vacua: Anomalies and qubit models
- URL: http://arxiv.org/abs/2209.12630v1
- Date: Mon, 26 Sep 2022 12:27:33 GMT
- Title: Lattice regularizations of $\theta$ vacua: Anomalies and qubit models
- Authors: Mendel Nguyen, Hersh Singh
- Abstract summary: We argue that the sigma continuum anomaly for a given symmetry can be matched by a manifestly-symmetric, local, lattice regularization in the same spacetime dimensionality.
For possibility (i), we argue that Grassmannian NLSMs can be obtained from $mathrmSU(N)$ antiferromagnets with a well-defined continuum limit.
For possibility (ii), we show that the conventional lattice regularization of $theta$ vacua due to Berg and L"uscher reproduces the anomaly exactly on the lattice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomalies are a powerful way to gain insight into possible lattice
regularizations of a quantum field theory. In this work, we argue that the
continuum anomaly for a given symmetry can be matched by a
manifestly-symmetric, local, lattice regularization in the same spacetime
dimensionality only if (i) the symmetry action is offsite, or (ii) if the
continuum anomaly is reproduced exactly on the lattice. We consider lattice
regularizations of a class of prototype models of QCD: the (1+1)-dimensional
asymptotically-free Grassmannian nonlinear sigma models (NLSMs) with a $\theta$
term. Using the Grassmannian NLSMs as a case study, we provide examples of
lattice regularizations in which both possibilities are realized. For
possibility (i), we argue that Grassmannian NLSMs can be obtained from
$\mathrm{SU}(N)$ antiferromagnets with a well-defined continuum limit,
reproducing both the infrared physics of $\theta$ vacua and the ultraviolet
physics of asymptotic freedom. These results enable the application of new
classical algorithms to lattice Monte Carlo studies of these quantum field
theories, and provide a viable realization suited for their quantum simulation.
On the other hand, we show that, perhaps surprisingly, the conventional lattice
regularization of $\theta$ vacua due to Berg and L\"uscher reproduces the
anomaly exactly on the lattice, providing a realization of the second
possibility.
Related papers
- Interacting chiral fermions on the lattice with matrix product operator norms [37.69303106863453]
We develop a Hamiltonian formalism for simulating interacting chiral fermions on the lattice.
The fermion doubling problem is circumvented by constructing a Fock space endowed with a semi-definite norm.
We demonstrate that the scaling limit of the free model recovers the chiral fermion field.
arXiv Detail & Related papers (2024-05-16T17:46:12Z) - Renormalization group and spectra of the generalized P\"oschl-Teller
potential [0.0]
We study the P"oschl-Teller potential $V(x) = alpha2 g_s sinh-2(alpha x) + alpha2 g_c cosh-2(alpha x)$, for every value of the dimensionless parameters $g_s$ and $g_c singularity.
We show that supersymmetry of the potential, when present, is also spontaneously broken, along with conformal symmetry.
arXiv Detail & Related papers (2023-08-08T21:44:55Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Quantum and classical spin network algorithms for $q$-deformed
Kogut-Susskind gauge theories [0.0]
We introduce $q$-deformed Kogut-Susskind lattice gauge theories, obtained by deforming the defining symmetry algebra to a quantum group.
Our proposal simultaneously provides a controlled regularization of the infinite-dimensional local Hilbert space while preserving essential symmetry-related properties.
Our work gives a new perspective for the application of tensor network methods to high-energy physics.
arXiv Detail & Related papers (2023-04-05T15:49:20Z) - Quantum lattice models that preserve continuous translation symmetry [0.0]
Bandlimited continuous quantum fields are isomorphic to lattice theories, yet without requiring a fixed lattice.
This is an isomorphism that avoids taking the limit of the lattice spacing going to zero.
One obtains conserved lattice observables for these continuous symmetries, as well as a duality of locality from the two perspectives.
arXiv Detail & Related papers (2023-03-14T06:32:15Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Hamiltonian limit of lattice QED in 2+1 dimensions [0.0]
We present a study of the Hamiltonian limit for a Euclidean $U(1)$ gauge theory in 2+1 dimensions (QED3), regularized on a toroidal lattice.
The limit is found using the renormalized anisotropy $xi_R=a_t/a_s$, by sending $xi_R to 0$ while keeping the spatial lattice spacing constant.
arXiv Detail & Related papers (2022-12-19T17:04:45Z) - Gauge Theory Couplings on Anisotropic Lattices [7.483799520082159]
We derive perturbative relations between bare and renormalized quantities in Euclidean spacetime at any anisotropy factor.
We find less than $10%$ discrepancy between our perturbative results and those from existing nonperturbative determinations of the anisotropy.
arXiv Detail & Related papers (2022-08-22T15:56:53Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.