Super spontaneous four-wave mixing in an array of silicon
microresonators
- URL: http://arxiv.org/abs/2209.12641v1
- Date: Mon, 26 Sep 2022 12:43:57 GMT
- Title: Super spontaneous four-wave mixing in an array of silicon
microresonators
- Authors: Massimo Borghi, Federico Andrea Sabattoli, Houssein El Dirani, Laurene
Youssef, Camille Petit-Etienne, Erwine Pargon, J.E. Sipe, Amideddin
Mataji-Kojouri, Marco Liscidini, Corrado Sciancalepore, Matteo Galli, and
Daniele Bajoni
- Abstract summary: We report experimental evidence of super spontaneous four-wave mixing (super SFWM)
We study this phenomenon in an array of microring resonators on a silicon photonic chip coupled to bus waveguides.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Composite optical systems can show compelling collective dynamics. For
instance, the cooperative decay of quantum emitters into a common radiation
mode can lead to superradiance, where the emission rate of the ensemble is
larger than the sum of the rates of the individual emitters. Here, we report
experimental evidence of super spontaneous four-wave mixing (super SFWM), an
analogous effect for the generation of photon pairs in a parametric nonlinear
process on an integrated photonic device. We study this phenomenon in an array
of microring resonators on a silicon photonic chip coupled to bus waveguides.
We measured a cooperative pair generation rate that always exceeds the
incoherent sum of the rates of the individual resonators. We investigate the
physical mechanisms underlying this collective behaviour, clarify the impact of
loss, and address the aspects of fundamental and technological relevance of our
results.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Parametric Light-Matter Interaction in the Single-Photon Strong Coupling Limit [0.0]
In this article, we demonstrate a new paradigm of parametrically coupled microwave circuits.
We replace one linear microwave cavity with a superconducting transmon qubit.
Applying a strong sideband drive results in an on-demand, non-linear Jaynes-Cummings interaction with the linear resonator.
arXiv Detail & Related papers (2024-07-02T07:45:34Z) - Collective coupling of driven multilevel atoms and its effect on four-wave mixing [0.0]
We present a systematic analysis of the cooperative effects arising in driven systems composed of multilevel atoms coupled via a common electromagnetic environment.
The dependence of single and two-photon correlations are studied in detail for each region by varying atomic orientations.
It is found that the anisotropy of the dipole-dipole interaction and its wave nature are essential to understand the behavior of the photons correlations.
arXiv Detail & Related papers (2024-04-04T17:36:24Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Resonance fluorescence of a chiral artificial atom [0.28675177318965034]
We demonstrate a superconducting artificial atom with strong unidirectional coupling to a microwave photonic waveguide.
Our demonstration puts forth a superconducting hardware platform for the realization of several key functionalities pursued within the paradigm of chiral quantum optics.
arXiv Detail & Related papers (2022-12-21T22:59:43Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.