Resonance fluorescence of a chiral artificial atom
- URL: http://arxiv.org/abs/2212.11400v1
- Date: Wed, 21 Dec 2022 22:59:43 GMT
- Title: Resonance fluorescence of a chiral artificial atom
- Authors: Chaitali Joshi, Frank Yang, and Mohammad Mirhosseini
- Abstract summary: We demonstrate a superconducting artificial atom with strong unidirectional coupling to a microwave photonic waveguide.
Our demonstration puts forth a superconducting hardware platform for the realization of several key functionalities pursued within the paradigm of chiral quantum optics.
- Score: 0.28675177318965034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate a superconducting artificial atom with strong unidirectional
coupling to a microwave photonic waveguide. Our artificial atom is realized by
coupling a transmon qubit to the waveguide at two spatially separated points
with time-modulated interactions. Direction-sensitive interference arising from
the parametric couplings in our scheme results in a non-reciprocal response,
where we measure a forward/backward ratio of spontaneous emission exceeding
100. We verify the quantum nonlinear behavior of this artificial chiral atom by
measuring the resonance fluorescence spectrum under a strong resonant drive and
observing well-resolved Mollow triplets. Further, we demonstrate chirality for
the second transition energy of the artificial atom and control it with a pulse
sequence to realize a qubit-state-dependent non-reciprocal phase on itinerant
photons. Our demonstration puts forth a superconducting hardware platform for
the scalable realization of several key functionalities pursued within the
paradigm of chiral quantum optics, including quantum networks with all-to-all
connectivity, driven-dissipative stabilization of many-body entanglement, and
the generation of complex non-classical states of light.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Tunable photon scattering by an atom dimer coupled to a band edge of a photonic crystal waveguide [0.0]
Quantum emitters trapped near photonic crystal waveguides have emerged as an exciting platform for realizing novel quantum matter-light interfaces.
We study tunable photon scattering in a photonic crystal waveguide coupled to an atom dimer with an arbitrary spatial separation.
arXiv Detail & Related papers (2024-09-30T13:57:58Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Ultrastrong waveguide QED with giant atoms [0.0]
We extend the theory of giant atoms to deal with the ultrastrong coupling regime.
We show that virtual photons dressing the ground state are non-exponentially localized around the contact points but decay as a power-law.
arXiv Detail & Related papers (2022-05-16T18:01:13Z) - Engineering symmetry-selective couplings of a superconducting artificial
molecule to microwave waveguides [0.0]
We demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits, and two microwave waveguides.
We show that this coupling arrangement makes it possible to straightforwardly generate spatially-separated Bell states propagating across the waveguides.
We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.
arXiv Detail & Related papers (2022-02-24T17:16:11Z) - Tailoring the degree of entanglement of two coherently coupled quantum
emitters [0.0]
Controlled molecular entanglement can serve as a test-bench to decipher more complex physical or biological mechanisms governed by the coherent coupling.
We implement hyperspectral imaging to identify pairs of coupled organic molecules trapped in a low temperature matrix.
We also demonstrate far-field selective excitation of the long-lived subradiant delocalized states with a laser field tailored in amplitude and phase.
arXiv Detail & Related papers (2021-09-22T08:30:59Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.