Developing Machine-Learned Potentials for Coarse-Grained Molecular
Simulations: Challenges and Pitfalls
- URL: http://arxiv.org/abs/2209.12948v1
- Date: Mon, 26 Sep 2022 18:32:37 GMT
- Title: Developing Machine-Learned Potentials for Coarse-Grained Molecular
Simulations: Challenges and Pitfalls
- Authors: Eleonora Ricci, George Giannakopoulos, Vangelis Karkaletsis, Doros N.
Theodorou, Niki Vergadou
- Abstract summary: Coarse graining (CG) enables the investigation of molecular properties for larger systems and at longer timescales than the ones attainable at the atomistic resolution.
Machine learning techniques have been recently proposed to learn CG particle interactions, i.e. develop CG force fields.
In this work, the force acting on each CG particle is correlated to a learned representation of its local environment that goes under the name of SchNet, constructed via continuous filter convolutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coarse graining (CG) enables the investigation of molecular properties for
larger systems and at longer timescales than the ones attainable at the
atomistic resolution. Machine learning techniques have been recently proposed
to learn CG particle interactions, i.e. develop CG force fields. Graph
representations of molecules and supervised training of a graph convolutional
neural network architecture are used to learn the potential of mean force
through a force matching scheme. In this work, the force acting on each CG
particle is correlated to a learned representation of its local environment
that goes under the name of SchNet, constructed via continuous filter
convolutions. We explore the application of SchNet models to obtain a CG
potential for liquid benzene, investigating the effect of model architecture
and hyperparameters on the thermodynamic, dynamical, and structural properties
of the simulated CG systems, reporting and discussing challenges encountered
and future directions envisioned.
Related papers
- GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.
We leverage continuum mechanics, modeling each kernel as a continuous piece of matter to account for realistic deformations without idealized assumptions.
GauSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Do Graph Neural Networks Work for High Entropy Alloys? [12.002942104379986]
High-entropy alloys (HEAs) lack chemical long-range order, limiting the applicability of current graph representations.
We introduce the LESets machine learning model, an accurate, interpretable GNN for HEA property prediction.
We demonstrate the accuracy of LESets in modeling the mechanical properties ofquaternary HEAs.
arXiv Detail & Related papers (2024-08-29T08:20:02Z) - Thermodynamic Transferability in Coarse-Grained Force Fields using Graph Neural Networks [36.136619420474766]
We use a graph-convolutional neural network architecture to develop a highly automated training pipeline for coarse grained force fields.
We show that this approach yields highly accurate force fields, but also that these force fields are more transferable through a variety of thermodynamic conditions.
arXiv Detail & Related papers (2024-06-17T21:44:05Z) - Statistically Optimal Force Aggregation for Coarse-Graining Molecular
Dynamics [55.41644538483948]
coarse-grained (CG) models have the potential to simulate large molecular complexes beyond what is possible with atomistic molecular dynamics.
A widely used methodology for learning CG force-fields maps forces from all-atom molecular dynamics to the CG representation and matches them with a CG force-field on average.
We show that there is flexibility in how to map all-atom forces to the CG representation, and that the most commonly used mapping methods are statistically inefficient and potentially even incorrect in the presence of constraints in the all-atom simulation.
arXiv Detail & Related papers (2023-02-14T14:35:39Z) - Two for One: Diffusion Models and Force Fields for Coarse-Grained
Molecular Dynamics [15.660348943139711]
We leverage connections between score-based generative models, force fields and molecular dynamics to learn a CG force field without requiring any force inputs during training.
While having a vastly simplified training setup compared to previous work, we demonstrate that our approach leads to improved performance across several small- to medium-sized protein simulations.
arXiv Detail & Related papers (2023-02-01T17:09:46Z) - Geometric Knowledge Distillation: Topology Compression for Graph Neural
Networks [80.8446673089281]
We study a new paradigm of knowledge transfer that aims at encoding graph topological information into graph neural networks (GNNs)
We propose Neural Heat Kernel (NHK) to encapsulate the geometric property of the underlying manifold concerning the architecture of GNNs.
A fundamental and principled solution is derived by aligning NHKs on teacher and student models, dubbed as Geometric Knowledge Distillation.
arXiv Detail & Related papers (2022-10-24T08:01:58Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Coarse Graining Molecular Dynamics with Graph Neural Networks [3.0279361008741827]
We introduce a hybrid architecture for the machine learning of coarse-grained force fields that learns their own features via a subnetwork.
We demonstrate that this framework succeeds at reproducing the thermodynamics for small biomolecular systems.
arXiv Detail & Related papers (2020-07-22T13:20:08Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.