Geometric Knowledge Distillation: Topology Compression for Graph Neural
Networks
- URL: http://arxiv.org/abs/2210.13014v1
- Date: Mon, 24 Oct 2022 08:01:58 GMT
- Title: Geometric Knowledge Distillation: Topology Compression for Graph Neural
Networks
- Authors: Chenxiao Yang, Qitian Wu, Junchi Yan
- Abstract summary: We study a new paradigm of knowledge transfer that aims at encoding graph topological information into graph neural networks (GNNs)
We propose Neural Heat Kernel (NHK) to encapsulate the geometric property of the underlying manifold concerning the architecture of GNNs.
A fundamental and principled solution is derived by aligning NHKs on teacher and student models, dubbed as Geometric Knowledge Distillation.
- Score: 80.8446673089281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a new paradigm of knowledge transfer that aims at encoding graph
topological information into graph neural networks (GNNs) by distilling
knowledge from a teacher GNN model trained on a complete graph to a student GNN
model operating on a smaller or sparser graph. To this end, we revisit the
connection between thermodynamics and the behavior of GNN, based on which we
propose Neural Heat Kernel (NHK) to encapsulate the geometric property of the
underlying manifold concerning the architecture of GNNs. A fundamental and
principled solution is derived by aligning NHKs on teacher and student models,
dubbed as Geometric Knowledge Distillation. We develop non- and parametric
instantiations and demonstrate their efficacy in various experimental settings
for knowledge distillation regarding different types of privileged topological
information and teacher-student schemes.
Related papers
- Tensor-view Topological Graph Neural Network [16.433092191206534]
Graph neural networks (GNNs) have recently gained growing attention in graph learning.
Existing GNNs only use local information from a very limited neighborhood around each node.
We propose a novel Topological Graph Neural Network (TTG-NN), a class of simple yet effective deep learning.
Real data experiments show that the proposed TTG-NN outperforms 20 state-of-the-art methods on various graph benchmarks.
arXiv Detail & Related papers (2024-01-22T14:55:01Z) - Joint Feature and Differentiable $ k $-NN Graph Learning using Dirichlet
Energy [103.74640329539389]
We propose a deep FS method that simultaneously conducts feature selection and differentiable $ k $-NN graph learning.
We employ Optimal Transport theory to address the non-differentiability issue of learning $ k $-NN graphs in neural networks.
We validate the effectiveness of our model with extensive experiments on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-21T08:15:55Z) - HIRE: Distilling High-order Relational Knowledge From Heterogeneous
Graph Neural Networks [4.713436329217004]
We propose a versatile plug-and-play module, which accounts for distilling relational knowledge from pre-trained HGNNs.
To the best of our knowledge, we are the first to propose a HIgh-order RElational (HIRE) knowledge distillation framework on heterogeneous graphs.
arXiv Detail & Related papers (2022-07-25T03:25:15Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Topological Relational Learning on Graphs [2.4692806302088868]
Graph neural networks (GNNs) have emerged as a powerful tool for graph classification and representation learning.
We propose a novel topological relational inference (TRI) which allows for integrating higher-order graph information to GNNs.
We show that the new TRI-GNN outperforms all 14 state-of-the-art baselines on 6 out 7 graphs and exhibit higher robustness to perturbations.
arXiv Detail & Related papers (2021-10-29T04:03:27Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Distilling Knowledge from Graph Convolutional Networks [146.71503336770886]
Existing knowledge distillation methods focus on convolutional neural networks (CNNs)
We propose the first dedicated approach to distilling knowledge from a pre-trained graph convolutional network (GCN) model.
We show that our method achieves the state-of-the-art knowledge distillation performance for GCN models.
arXiv Detail & Related papers (2020-03-23T18:23:11Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.