Improving Multilingual Neural Machine Translation System for Indic
Languages
- URL: http://arxiv.org/abs/2209.13279v1
- Date: Tue, 27 Sep 2022 09:51:56 GMT
- Title: Improving Multilingual Neural Machine Translation System for Indic
Languages
- Authors: Sudhansu Bala Das, Atharv Biradar, Tapas Kumar Mishra, Bidyut Kumar
Patra
- Abstract summary: We propose a multilingual neural machine translation (MNMT) system to address the issues related to low-resource language translation.
A state-of-the-art transformer architecture is used to realize the proposed model.
Trials over a good amount of data reveal its superiority over the conventional models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Translation System (MTS) serves as an effective tool for
communication by translating text or speech from one language to another
language. The need of an efficient translation system becomes obvious in a
large multilingual environment like India, where English and a set of Indian
Languages (ILs) are officially used. In contrast with English, ILs are still
entreated as low-resource languages due to unavailability of corpora. In order
to address such asymmetric nature, multilingual neural machine translation
(MNMT) system evolves as an ideal approach in this direction. In this paper, we
propose a MNMT system to address the issues related to low-resource language
translation. Our model comprises of two MNMT systems i.e. for English-Indic
(one-to-many) and the other for Indic-English (many-to-one) with a shared
encoder-decoder containing 15 language pairs (30 translation directions). Since
most of IL pairs have scanty amount of parallel corpora, not sufficient for
training any machine translation model. We explore various augmentation
strategies to improve overall translation quality through the proposed model. A
state-of-the-art transformer architecture is used to realize the proposed
model. Trials over a good amount of data reveal its superiority over the
conventional models. In addition, the paper addresses the use of language
relationships (in terms of dialect, script, etc.), particularly about the role
of high-resource languages of the same family in boosting the performance of
low-resource languages. Moreover, the experimental results also show the
advantage of backtranslation and domain adaptation for ILs to enhance the
translation quality of both source and target languages. Using all these key
approaches, our proposed model emerges to be more efficient than the baseline
model in terms of evaluation metrics i.e BLEU (BiLingual Evaluation Understudy)
score for a set of ILs.
Related papers
- Enhancing Neural Machine Translation of Low-Resource Languages: Corpus
Development, Human Evaluation and Explainable AI Architectures [0.0]
The Transformer architecture stands out as the gold standard, especially for high-resource language pairs.
The scarcity of parallel datasets for low-resource languages can hinder machine translation development.
This thesis introduces adaptNMT and adaptMLLM, two open-source applications streamlined for the development, fine-tuning, and deployment of neural machine translation models.
arXiv Detail & Related papers (2024-03-03T18:08:30Z) - An approach for mistranslation removal from popular dataset for Indic MT
Task [5.4755933832880865]
We propose an algorithm to remove mistranslations from the training corpus and evaluate its performance and efficiency.
Two Indic languages (ILs), namely, Hindi (HIN) and Odia (ODI) are chosen for the experiment.
The quality of the translations in the experiment is evaluated using standard metrics such as BLEU, METEOR, and RIBES.
arXiv Detail & Related papers (2024-01-12T06:37:19Z) - Building Multilingual Machine Translation Systems That Serve Arbitrary
X-Y Translations [75.73028056136778]
We show how to practically build MNMT systems that serve arbitrary X-Y translation directions.
We also examine our proposed approach in an extremely large-scale data setting to accommodate practical deployment scenarios.
arXiv Detail & Related papers (2022-06-30T02:18:15Z) - Multilingual Neural Machine Translation:Can Linguistic Hierarchies Help? [29.01386302441015]
Multilingual Neural Machine Translation (MNMT) trains a single NMT model that supports translation between multiple languages.
The performance of an MNMT model is highly dependent on the type of languages used in training, as transferring knowledge from a diverse set of languages degrades the translation performance due to negative transfer.
We propose a Hierarchical Knowledge Distillation (HKD) approach for MNMT which capitalises on language groups generated according to typological features and phylogeny of languages to overcome the issue of negative transfer.
arXiv Detail & Related papers (2021-10-15T02:31:48Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
We propose a new learning objective for Multilingual neural machine translation (MNMT) based on distributionally robust optimization.
We show how to practically optimize this objective for large translation corpora using an iterated best response scheme.
Our method consistently outperforms strong baseline methods in terms of average and per-language performance under both many-to-one and one-to-many translation settings.
arXiv Detail & Related papers (2021-09-09T03:48:35Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
We create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages.
We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining.
Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT.
arXiv Detail & Related papers (2020-10-21T17:01:23Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASP is an approach to pre-train a universal multilingual neural machine translation model.
We carry out experiments on 42 translation directions across a diverse setting, including low, medium, rich resource, and as well as transferring to exotic language pairs.
arXiv Detail & Related papers (2020-10-07T03:57:54Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations.
We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics.
We propose random online backtranslation to enforce the translation of unseen training language pairs.
arXiv Detail & Related papers (2020-04-24T17:21:32Z) - Neural Machine Translation for Low-Resourced Indian Languages [4.726777092009554]
Machine translation is an effective approach to convert text to a different language without any human involvement.
In this paper, we have applied NMT on two of the most morphological rich Indian languages, i.e. English-Tamil and English-Malayalam.
We proposed a novel NMT model using Multihead self-attention along with pre-trained Byte-Pair-Encoded (BPE) and MultiBPE embeddings to develop an efficient translation system.
arXiv Detail & Related papers (2020-04-19T17:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.