Signatures of quantum geometry from exponential corrections to the black hole entropy
- URL: http://arxiv.org/abs/2209.13383v2
- Date: Thu, 9 May 2024 17:11:29 GMT
- Title: Signatures of quantum geometry from exponential corrections to the black hole entropy
- Authors: Soham Sen, Ashis Saha, Sunandan Gangopadhyay,
- Abstract summary: We obtain the possible form of the spacetime geometry from the entropy of the black hole for a given horizon radius.
Remarkably, the black hole geometry reconstructed has striking similarities to that of noncommutative-inspired Schwarzschild black holes.
- Score: 0.10713888959520207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It has been recently shown in [Phys. Rev. Lett. 125 (2020) 041302] that microstate counting carried out for quantum states residing on the horizon of a black hole leads to a correction of the form $\exp(-A/4l_p^2)$ in the Bekenstein-Hawking form of the black hole entropy. In this paper, we develop a novel approach to obtain the possible form of the spacetime geometry from the entropy of the black hole for a given horizon radius. The uniqueness of this solution for a given energy-momentum tensor has also been discussed. Remarkably, the black hole geometry reconstructed has striking similarities to that of noncommutative-inspired Schwarzschild black holes [Phys. Lett. B 632 (2006) 547]. We also obtain the matter density functions using Einstein field equations for the geometries we reconstruct from the thermodynamics of black holes. These also have similarities to that of the matter density function of a noncommutative-inspired Schwarzschild black hole. The conformal structure of the metric is briefly discussed and the Penrose-Carter diagram is drawn. We then compute the Komar energy and the Smarr formula for the effective black hole geometry and compare it with that of the noncommutative-inspired Schwarzschild black hole. We also discuss some astrophysical implications of the solutions. Finally, we propose a set of quantum Einstein vacuum field equations, as a solution of which we obtain one of the spacetime solutions obtained in this work. We then show a direct connection between the quantum Einstein vacuum field equations and the first law of black hole thermodynamics.
Related papers
- Exploring regular black holes within the framework of the TFD formalism [0.0]
The energy-momentum tensor is calculated for a regular black hole solution.
The results for the regular black hole are compared with those obtained for the Schwarzschild black hole.
arXiv Detail & Related papers (2024-06-29T23:49:12Z) - Page Time as a Transition of Information Channels: High-fidelity
Information Retrieval for Radiating Black Holes [11.13371546439765]
In this Letter, we demonstrate that this view can be relaxed in a new postselection model.
We investigate information recoverability in a radiating black hole through the non-unitary dynamics that projects the randomly-selected modes from a scrambling unitary.
We show that the model has the merit of producing the von Neumann entropy of black holes consistent with the island formula calculation.
In this model the Page time gains a new interpretation as the transition point between two channels of information transmission when sufficient amounts of effective modes are annihilated inside the horizon.
arXiv Detail & Related papers (2023-09-05T03:12:48Z) - Constraints on physical computers in holographic spacetimes [49.1574468325115]
We show that there are computations on $n$ qubits which cannot be implemented inside of black holes with entropy less than $O(2n)$.
We argue computations happening inside the black hole must be implementable in a programmable quantum processor.
arXiv Detail & Related papers (2023-04-19T18:00:50Z) - Quantum Black hole--White hole entangled states [0.0]
We investigate the quantum deformation of the Wheeler--DeWitt equation of a Schwarzchild black hole.
We show that the event horizon area and the mass are quantized, degenerate, and bounded.
The degeneracy of states indicates entangled quantum black hole/white hole states.
arXiv Detail & Related papers (2022-03-18T14:02:52Z) - Equivalence principle and HBAR entropy of an atom falling into a quantum
corrected black hole [0.29998889086656577]
We investigate the phenomenon of acceleration radiation exhibited by an atom falling into a quantum corrected Schwarzschild black hole.
We calculate the horizon brightened acceleration radiation entropy for this quantum corrected black hole geometry.
arXiv Detail & Related papers (2022-02-01T02:44:51Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - What can we learn about islands and state paradox from quantum
information theory? [10.24376036299883]
We show that the Page curve can still be realized even if information is lost and the information paradox can be attributed to the measurement problem.
Though speculative, the similarities between the black hole information problem and the measurement problem may suggest some link in the origins of the two fundamental issues of distant fields.
arXiv Detail & Related papers (2021-07-20T02:03:09Z) - Schr\"odinger equation in a general curved space-time geometry [0.0]
We consider relativistic quantum field theory in the presence of an external electric potential in a general curved space-time geometry.
We calculate the leading correction due to the curvature of the space-time geometry to the Schr"odinger equation.
We then compute the non-vanishing probability of excitation for a hydrogen atom that falls in or is scattered by a general Schwarzschild black hole.
arXiv Detail & Related papers (2021-05-26T18:47:44Z) - A divergent volume for black holes calls for no "firewall" [8.747032648802117]
This paper proposes a scenario that rescinds firewall by introducing the concept of volume for a black hole.
We show that the volume and its associated entropy for a collapsed black hole diverges if the final evaporation stage is treated using noncommutative space.
arXiv Detail & Related papers (2020-02-23T04:11:19Z) - A dynamical mechanism for the Page curve from quantum chaos [8.020530603813416]
We show that the Page curve can result from a simple dynamical input in the evolution of the black hole.
We conjecture that void formation may provide a microscopic explanation for the recent semi-classical prescription of including islands in the calculation of the entanglement entropy of the radiation.
arXiv Detail & Related papers (2020-02-13T19:00:03Z) - Second law of black hole thermodynamics [2.538209532048867]
If simple entropy in the Bekenstein-Hawking area law for a Schwarzschild black hole is replaced with 'negative' quantum conditional entropy, the first law for black hole mechanics is resolved.
Here, with the no-hair conjecture, we derive the perfect picture of a second law of black hole thermodynamics for any black hole from the modified area law.
If this is confirmed, the modified area law could be to the first example of fundamental equations in physics which cannot be described without the concept of quantum information.
arXiv Detail & Related papers (2020-01-09T09:33:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.