Formal Conceptual Views in Neural Networks
- URL: http://arxiv.org/abs/2209.13517v1
- Date: Tue, 27 Sep 2022 16:38:24 GMT
- Title: Formal Conceptual Views in Neural Networks
- Authors: Johannes Hirth and Tom Hanika
- Abstract summary: We introduce two notions for conceptual views of a neural network, specifically a many-valued and a symbolic view.
We test the conceptual expressivity of our novel views through different experiments on the ImageNet and Fruit-360 data sets.
We demonstrate how conceptual views can be applied for abductive learning of human comprehensible rules from neurons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explaining neural network models is a challenging task that remains unsolved
in its entirety to this day. This is especially true for high dimensional and
complex data. With the present work, we introduce two notions for conceptual
views of a neural network, specifically a many-valued and a symbolic view. Both
provide novel analysis methods to enable a human AI analyst to grasp deeper
insights into the knowledge that is captured by the neurons of a network. We
test the conceptual expressivity of our novel views through different
experiments on the ImageNet and Fruit-360 data sets. Furthermore, we show to
which extent the views allow to quantify the conceptual similarity of different
learning architectures. Finally, we demonstrate how conceptual views can be
applied for abductive learning of human comprehensible rules from neurons. In
summary, with our work, we contribute to the most relevant task of globally
explaining neural networks models.
Related papers
- LLM-assisted Concept Discovery: Automatically Identifying and Explaining Neuron Functions [15.381209058506078]
Prior works have associated concepts with neurons based on examples of concepts or a pre-defined set of concepts.
We propose to leverage multimodal large language models for automatic and open-ended concept discovery.
We validate each concept by generating examples and counterexamples and evaluating the neuron's response on this new set of images.
arXiv Detail & Related papers (2024-06-12T18:19:37Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Finding Concept Representations in Neural Networks with Self-Organizing
Maps [2.817412580574242]
We show how self-organizing maps can be used to inspect how activation of layers of neural networks correspond to neural representations of abstract concepts.
We show that, among the measures tested, the relative entropy of the activation map for a concept is a suitable candidate and can be used as part of a methodology to identify and locate the neural representation of a concept.
arXiv Detail & Related papers (2023-12-10T12:10:34Z) - OC-NMN: Object-centric Compositional Neural Module Network for
Generative Visual Analogical Reasoning [49.12350554270196]
We show how modularity can be leveraged to derive a compositional data augmentation framework inspired by imagination.
Our method, denoted Object-centric Compositional Neural Module Network (OC-NMN), decomposes visual generative reasoning tasks into a series of primitives applied to objects without using a domain-specific language.
arXiv Detail & Related papers (2023-10-28T20:12:58Z) - From Neural Activations to Concepts: A Survey on Explaining Concepts in Neural Networks [15.837316393474403]
Concepts can act as a natural link between learning and reasoning.
Knowledge can not only be extracted from neural networks but concept knowledge can also be inserted into neural network architectures.
arXiv Detail & Related papers (2023-10-18T11:08:02Z) - Concept backpropagation: An Explainable AI approach for visualising
learned concepts in neural network models [0.0]
We present an extension to the method of concept detection, named emphconcept backpropagation, which provides a way of analysing how the information representing a given concept is internalised in a given neural network model.
arXiv Detail & Related papers (2023-07-24T08:21:13Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
Humans can explain their predictions using succinct and intuitive descriptions.
We show that a vision model whose feature representations are text can effectively classify ImageNet images.
arXiv Detail & Related papers (2023-06-29T00:24:42Z) - Mapping Knowledge Representations to Concepts: A Review and New
Perspectives [0.6875312133832078]
This review focuses on research that aims to associate internal representations with human understandable concepts.
We find this taxonomy and theories of causality, useful for understanding what can be expected, and not expected, from neural network explanations.
The analysis additionally uncovers an ambiguity in the reviewed literature related to the goal of model explainability.
arXiv Detail & Related papers (2022-12-31T12:56:12Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
We present an analytic framework to systematically identify hidden units within image classification and image generation networks.
First, we analyze a convolutional neural network (CNN) trained on scene classification and discover units that match a diverse set of object concepts.
Second, we use a similar analytic method to analyze a generative adversarial network (GAN) model trained to generate scenes.
arXiv Detail & Related papers (2020-09-10T17:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.