Dispersion chain of quantum mechanics equations
- URL: http://arxiv.org/abs/2209.14069v1
- Date: Wed, 28 Sep 2022 12:58:19 GMT
- Title: Dispersion chain of quantum mechanics equations
- Authors: E.E. Perepelkin, B.I. Sadovnikov, N.G. Inozemtseva, A.A. Korepanova
- Abstract summary: The paper considers the construction of a new chain of equations of quantum mechanics of high kinematical values.
The proposed approach can be applied to consideration of classical and quantum systems with radiation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Based on the dispersion chain of the Vlasov equations, the paper considers
the construction of a new chain of equations of quantum mechanics of high
kinematical values. The proposed approach can be applied to consideration of
classical and quantum systems with radiation. A number of theorems are proved
on the form of extensions of the Hamilton operators, Lagrange functions,
Hamilton-Jacobi equations, and Maxwell equations to the case of a generalized
phase space. In some special cases of lower dimensions, the dispersion chain of
quantum mechanics is reduced to quantum mechanics in phase space (the Wigner
function) and the de Broglie-Bohm {\guillemotleft}pilot wave{\guillemotright}
theory. An example of solving the Schr\"odinger equation of the second rank
(for the phase space) is analyzed, which, in contrast to the Wigner function,
gives a positive distribution density function.
Related papers
- Time-Dependent Dunkl-Schrödinger Equation with an Angular-Dependent Potential [0.0]
The Schr"odinger equation is a fundamental equation in quantum mechanics.
Over the past decade, theoretical studies have focused on adapting the Dunkl derivative to quantum mechanical problems.
arXiv Detail & Related papers (2024-08-04T13:11:52Z) - Self-consistency, relativism and many-particle system [0.0]
Interrelation between concepts of self-consistency, relativism and many-particle systems is considered.
Paper shows that quantum systems with a time independent function of quasi-density probability in phase space are not capable to emit electromagnetic radiation.
arXiv Detail & Related papers (2024-04-21T08:38:40Z) - A dynamic programming interpretation of quantum mechanics [0.0]
We introduce a transformation of the quantum phase $S'=S+frachbar2logrho$, which converts the deterministic equations of quantum mechanics into the Lagrangian reference frame of particles.
We show that the quantum potential can be removed from the transformed quantum Hamilton-Jacobi equations if they are solved as Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-08T18:43:40Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Homological Quantum Mechanics [0.0]
We provide a formulation of quantum mechanics based on the cohomology of the Batalin-Vilkovisky algebra.
We derive the Unruh effect, illustrating that these methods are applicable to quantum field theory.
arXiv Detail & Related papers (2021-12-21T19:28:43Z) - Classical and Quantum Brownian Motion [0.0]
In quantum mechanics electrons and other point particles are no waves and the chapter of quantum mechanics originated for the force carriers.
A new projector operator is proposed for the collapse of the wave function of a quantum particle moving in a classical environment.
Considering the Brownian dynamics in the frames of the Bohmian mechanics, the density functional Bohm-Langevin equation is proposed.
arXiv Detail & Related papers (2021-05-12T13:24:39Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum dynamics and relaxation in comb turbulent diffusion [91.3755431537592]
Continuous time quantum walks in the form of quantum counterparts of turbulent diffusion in comb geometry are considered.
Operators of the form $hatcal H=hatA+ihatB$ are described.
Rigorous analytical analysis is performed for both wave and Green's functions.
arXiv Detail & Related papers (2020-10-13T15:50:49Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.