Self-consistency, relativism and many-particle system
- URL: http://arxiv.org/abs/2404.13580v2
- Date: Wed, 23 Oct 2024 08:51:13 GMT
- Title: Self-consistency, relativism and many-particle system
- Authors: E. E. Perepelkin, B. I. Sadovnikov, N. G. Inozemtseva, M. V. Klimenko,
- Abstract summary: Interrelation between concepts of self-consistency, relativism and many-particle systems is considered.
Paper shows that quantum systems with a time independent function of quasi-density probability in phase space are not capable to emit electromagnetic radiation.
- Score: 0.0
- License:
- Abstract: The interrelation between the concepts of self-consistency, relativism and many-particle systems is considered within the framework of a unified consideration of classical and quantum physics based on the first principle of the probability conservation law. The probability conservation law underlies the Vlasov equation chain. From the first Vlasov equation, the Schr\"odinger equation, the Hamilton-Jacobi equation, the equation of motion of a charged particle in an electromagnetic field, the Maxwell equations, the Pauli equation and the Dirac equation are constructed. The paper shows with mathematical rigor that quantum systems with a time independent function of quasi-density probability in phase space are not capable to emit electromagnetic radiation. It is shown that at the micro-level a quantum object may be considered rather as an {\guillemotleft}extended{\guillemotright} object than a point one. And the hydrodynamic description of continuum mechanics is applicable for such an object. A number of exact solutions of quantum and classical model systems is considered, demonstrating a new insight at the quantum mechanics representation.
Related papers
- A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - A dynamic programming interpretation of quantum mechanics [0.0]
We introduce a transformation of the quantum phase $S'=S+frachbar2logrho$, which converts the deterministic equations of quantum mechanics into the Lagrangian reference frame of particles.
We show that the quantum potential can be removed from the transformed quantum Hamilton-Jacobi equations if they are solved as Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-08T18:43:40Z) - A Fisher Information Perspective of Relativistic Quantum Mechanics [0.0]
We show how Schrodinger's equation can be deduced from a fluid dynamical Lagrangian of a charged potential flow.
The quantum behaviour was derived from Fisher information terms which were added to the classical Lagrangian.
arXiv Detail & Related papers (2023-08-01T08:36:30Z) - Quantum simulation of partial differential equations via
Schrodingerisation [31.986350313948435]
We present a simple new way to simulate general linear partial differential equations via quantum simulation.
Using a simple new transform, referred to as the warped phase transformation, any linear partial differential equation can be recast into a system of Schrodinger's equations.
This can be seen directly on the level of the dynamical equations without more sophisticated methods.
arXiv Detail & Related papers (2022-12-28T17:32:38Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Fall of a Particle to the Center of a Singular Potential: Classical vs.
Quantum Exact Solutions [0.0]
We inspect the quantum problem with the help of the conventional Schr"odinger's equation.
Surprisingly, the quantum and classical solutions exhibit striking similarities.
arXiv Detail & Related papers (2022-02-25T11:04:39Z) - Lyapunov equation in open quantum systems and non-Hermitian physics [0.0]
The continuous-time differential Lyapunov equation is widely used in linear optimal control theory.
In quantum physics, it is known to appear in Markovian descriptions of linear (quadratic Hamiltonian, linear equations of motion) open quantum systems.
We establish the Lyapunov equation as a fundamental and efficient formalism for linear open quantum systems.
arXiv Detail & Related papers (2022-01-03T14:40:07Z) - Exact time-dependent solution of the Schr\"odinger equation, its
generalization to the phase space and relation to the Gibbs distribution [0.0]
This paper makes an ideological attempt to approach the issue of guillemotleftunderstandingguillemotright the mechanism of quantum mechanics processes.
The new exact solution of the Schr"odinger equation is analyzed from the perspective of quantum mechanics in the phase space.
arXiv Detail & Related papers (2021-12-30T21:12:00Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.