Spatial Pruned Sparse Convolution for Efficient 3D Object Detection
- URL: http://arxiv.org/abs/2209.14201v1
- Date: Wed, 28 Sep 2022 16:19:06 GMT
- Title: Spatial Pruned Sparse Convolution for Efficient 3D Object Detection
- Authors: Jianhui Liu, Yukang Chen, Xiaoqing Ye, Zhuotao Tian, Xiao Tan,
Xiaojuan Qi
- Abstract summary: 3D scenes are dominated by a large number of background points, which is redundant for the detection task that mainly needs to focus on foreground objects.
In this paper, we analyze major components of existing 3D CNNs and find that 3D CNNs ignore the redundancy of data and further amplify it in the down-sampling process, which brings a huge amount of extra and unnecessary computational overhead.
We propose a new convolution operator named spatial pruned sparse convolution (SPS-Conv), which includes two variants, spatial pruned submanifold sparse convolution (SPSS-Conv) and spatial pruned regular sparse convolution (SPRS
- Score: 41.62839541489369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D scenes are dominated by a large number of background points, which is
redundant for the detection task that mainly needs to focus on foreground
objects. In this paper, we analyze major components of existing sparse 3D CNNs
and find that 3D CNNs ignore the redundancy of data and further amplify it in
the down-sampling process, which brings a huge amount of extra and unnecessary
computational overhead. Inspired by this, we propose a new convolution operator
named spatial pruned sparse convolution (SPS-Conv), which includes two
variants, spatial pruned submanifold sparse convolution (SPSS-Conv) and spatial
pruned regular sparse convolution (SPRS-Conv), both of which are based on the
idea of dynamically determining crucial areas for redundancy reduction. We
validate that the magnitude can serve as important cues to determine crucial
areas which get rid of the extra computations of learning-based methods. The
proposed modules can easily be incorporated into existing sparse 3D CNNs
without extra architectural modifications. Extensive experiments on the KITTI,
Waymo and nuScenes datasets demonstrate that our method can achieve more than
50% reduction in GFLOPs without compromising the performance.
Related papers
- HEDNet: A Hierarchical Encoder-Decoder Network for 3D Object Detection
in Point Clouds [19.1921315424192]
3D object detection in point clouds is important for autonomous driving systems.
A primary challenge in 3D object detection stems from the sparse distribution of points within the 3D scene.
We propose HEDNet, a hierarchical encoder-decoder network for 3D object detection.
arXiv Detail & Related papers (2023-10-31T07:32:08Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - Focal Sparse Convolutional Networks for 3D Object Detection [121.45950754511021]
We introduce two new modules to enhance the capability of Sparse CNNs.
They are focal sparse convolution (Focals Conv) and its multi-modal variant of focal sparse convolution with fusion.
For the first time, we show that spatially learnable sparsity in sparse convolution is essential for sophisticated 3D object detection.
arXiv Detail & Related papers (2022-04-26T17:34:10Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
Understanding [19.134536179555102]
We propose an alternative approach to overcome the limitations of CNN based approaches by encoding the spatial features of raw 3D point clouds into undirected graph models.
The proposed method achieves on par state-of-the-art accuracy with improved training time and model stability thus indicating strong potential for further research.
arXiv Detail & Related papers (2020-11-29T12:56:19Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Generative Sparse Detection Networks for 3D Single-shot Object Detection [43.91336826079574]
3D object detection has been widely studied due to its potential applicability to many promising areas such as robotics and augmented reality.
Yet, the sparse nature of the 3D data poses unique challenges to this task.
We propose Generative Sparse Detection Network (GSDN), a fully-convolutional single-shot sparse detection network.
arXiv Detail & Related papers (2020-06-22T15:54:24Z) - Spatial Information Guided Convolution for Real-Time RGBD Semantic
Segmentation [79.78416804260668]
We propose Spatial information guided Convolution (S-Conv), which allows efficient RGB feature and 3D spatial information integration.
S-Conv is competent to infer the sampling offset of the convolution kernel guided by the 3D spatial information.
We further embed S-Conv into a semantic segmentation network, called Spatial information Guided convolutional Network (SGNet)
arXiv Detail & Related papers (2020-04-09T13:38:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.