論文の概要: A Survey on Physical Adversarial Attack in Computer Vision
- arxiv url: http://arxiv.org/abs/2209.14262v3
- Date: Mon, 18 Sep 2023 05:47:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 01:31:07.634055
- Title: A Survey on Physical Adversarial Attack in Computer Vision
- Title(参考訳): コンピュータビジョンにおける身体的敵攻撃に関する調査
- Authors: Donghua Wang, Wen Yao, Tingsong Jiang, Guijian Tang, Xiaoqian Chen
- Abstract要約: ディープニューラルネットワーク(DNN)は、悪意のある小さなノイズによって作られた敵の例に弱いことが示されている。
DNNベースのシステムを現実世界に展開する機会が増えているため、これらのシステムの堅牢性を強化することは非常事態である。
- 参考スコア(独自算出の注目度): 7.053905447737444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past decade, deep learning has revolutionized conventional tasks
that rely on hand-craft feature extraction with its strong feature learning
capability, leading to substantial enhancements in traditional tasks. However,
deep neural networks (DNNs) have been demonstrated to be vulnerable to
adversarial examples crafted by malicious tiny noise, which is imperceptible to
human observers but can make DNNs output the wrong result. Existing adversarial
attacks can be categorized into digital and physical adversarial attacks. The
former is designed to pursue strong attack performance in lab environments
while hardly remaining effective when applied to the physical world. In
contrast, the latter focus on developing physical deployable attacks, thus
exhibiting more robustness in complex physical environmental conditions.
Recently, with the increasing deployment of the DNN-based system in the real
world, strengthening the robustness of these systems is an emergency, while
exploring physical adversarial attacks exhaustively is the precondition. To
this end, this paper reviews the evolution of physical adversarial attacks
against DNN-based computer vision tasks, expecting to provide beneficial
information for developing stronger physical adversarial attacks. Specifically,
we first proposed a taxonomy to categorize the current physical adversarial
attacks and grouped them. Then, we discuss the existing physical attacks and
focus on the technique for improving the robustness of physical attacks under
complex physical environmental conditions. Finally, we discuss the issues of
the current physical adversarial attacks to be solved and give promising
directions.
- Abstract(参考訳): 過去10年間で、ディープラーニングは、強力な機能学習能力を備えた手工芸機能抽出に依存する従来のタスクに革命をもたらし、従来のタスクを大きく強化した。
しかし、ディープニューラルネットワーク(dnn)は、悪意のある小さなノイズによって作り出される敵の例に対して脆弱であることが証明されている。
既存の敵攻撃は、デジタルおよび物理的敵攻撃に分類される。
前者は実験室環境での強力な攻撃性能を追求するが、物理的世界に適用した場合は効果がほとんどない。
対照的に後者は物理的に展開可能な攻撃の開発に注力し、複雑な物理的環境条件においてより堅牢性を示す。
近年,dnnベースのシステムの導入が増加する中,これらのシステムの堅牢性強化が非常事態となり,物理的な敵対的攻撃を徹底的に検討することが前提条件となっている。
本稿では,dnnベースのコンピュータビジョンタスクに対する物理的敵意攻撃の進化を概観し,より強固な物理的敵意攻撃を展開するための有益な情報の提供を期待する。
具体的には,まず,現在の身体的敵対攻撃を分類し,グループ化する分類法を提案した。
次に,既存の物理攻撃について論じ,複雑な物理環境下での物理攻撃の頑健性を改善する技術に着目する。
最後に,現在解決すべき物理的攻撃の問題点について議論し,有望な方向性を示す。
関連論文リスト
- Attack Anything: Blind DNNs via Universal Background Adversarial Attack [17.73886733971713]
ディープニューラルネットワーク(DNN)は、敵の摂動に感受性があり、弱いことが広く実証されている。
本稿では,攻撃効果を多種多様な対象,モデル,タスク間でよく一般化する,攻撃の背景攻撃フレームワークを提案する。
我々は,様々な対象,モデル,タスクにまたがるデジタルドメインと物理ドメインの両方において,包括的かつ厳密な実験を行い,提案手法のあらゆる攻撃の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-17T12:46:53Z) - Physical Adversarial Attacks For Camera-based Smart Systems: Current
Trends, Categorization, Applications, Research Challenges, and Future Outlook [2.1771693754641013]
本研究の目的は,身体的敵意攻撃の概念を深く理解し,その特徴を分析し,特徴を識別することである。
本稿では, 対象タスクに応じて異なるアプリケーションで分類した, 様々な物理的敵攻撃手法について検討する。
本研究は,これらの攻撃手法の有効性,ステルス性,ロバスト性の観点から評価する。
論文 参考訳(メタデータ) (2023-08-11T15:02:19Z) - State-of-the-art optical-based physical adversarial attacks for deep
learning computer vision systems [3.3470481105928216]
敵対的攻撃は、人間の目には認識できない最初の入力に小さな摂動を埋め込むことで、深層学習モデルを誤認し、誤った予測をする可能性がある。
物理的敵対攻撃は、より現実的なもので、摂動が入力に導入され、キャプチャされてバイナリ画像に変換される。
本稿では,コンピュータビジョンシステムのための光学的物理対向攻撃技術に焦点を当てる。
論文 参考訳(メタデータ) (2023-03-22T01:14:52Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Visually Adversarial Attacks and Defenses in the Physical World: A
Survey [27.40548512511512]
コンピュータビジョンにおける現在の敵攻撃は、それぞれの攻撃形態に応じてデジタル攻撃と物理的攻撃に分けられる。
本稿では,コンピュータビジョンにおける現在の身体的敵意攻撃と身体的敵意防御に対する調査を要約する。
論文 参考訳(メタデータ) (2022-11-03T09:28:45Z) - Physical Adversarial Attack meets Computer Vision: A Decade Survey [55.38113802311365]
本稿では,身体的敵意攻撃の概要を概観する。
本研究は,身体的敵意攻撃の性能を体系的に評価する第一歩を踏み出した。
提案する評価基準であるhiPAAは6つの視点から構成される。
論文 参考訳(メタデータ) (2022-09-30T01:59:53Z) - Robust Physical-World Attacks on Face Recognition [52.403564953848544]
ディープニューラルネットワーク(DNN)の開発によって顔認識が大幅に促進された
近年の研究では、DNNは敵対的な事例に対して非常に脆弱であることが示されており、現実世界の顔認識の安全性に対する深刻な懸念が提起されている。
ステッカーによる顔認識の物理的攻撃について検討し、その対向的堅牢性をよりよく理解する。
論文 参考訳(メタデータ) (2021-09-20T06:49:52Z) - Real-World Adversarial Examples involving Makeup Application [58.731070632586594]
フルフェイスメイクを用いた身体的敵攻撃を提案する。
我々の攻撃は、色や位置関連エラーなどのメークアップアプリケーションにおける手動エラーを効果的に克服できる。
論文 参考訳(メタデータ) (2021-09-04T05:29:28Z) - Spatiotemporal Attacks for Embodied Agents [119.43832001301041]
我々は、エンボディエージェントに対する敵攻撃を研究するための第一歩を踏み出した。
特に,時間次元と空間次元の両方の相互作用履歴を利用する逆例を生成する。
我々の摂動は強力な攻撃力と一般化能力を持っている。
論文 参考訳(メタデータ) (2020-05-19T01:38:47Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。