Quantum LDPC Codes for Modular Architectures
- URL: http://arxiv.org/abs/2209.14329v3
- Date: Mon, 15 May 2023 10:36:17 GMT
- Title: Quantum LDPC Codes for Modular Architectures
- Authors: Armands Strikis, Lucas Berent
- Abstract summary: We show how to view and construct quantum LDPC codes tailored for modular architectures.
We demonstrate that if the intra- and inter-modular qubit connectivity can be viewed as corresponding to some classical or quantum LDPC codes, then their hypergraph product code fully respects the architectural connectivity constraints.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In efforts to scale the size of quantum computers, modularity plays a central
role across most quantum computing technologies. In the light of fault
tolerance, this necessitates designing quantum error-correcting codes that are
compatible with the connectivity arising from the architectural layouts. In
this paper, we aim to bridge this gap by giving a novel way to view and
construct quantum LDPC codes tailored for modular architectures. We demonstrate
that if the intra- and inter-modular qubit connectivity can be viewed as
corresponding to some classical or quantum LDPC codes, then their hypergraph
product code fully respects the architectural connectivity constraints.
Finally, we show that relaxed connectivity constraints that allow twists of
connections between modules pave a way to construct codes with better
parameters.
Related papers
- Modular Architectures and Entanglement Schemes for Error-Corrected Distributed Quantum Computation [1.6492989697868894]
We study modular quantum computers with solid-state quantum hardware.
We investigate a distributed surface code's error-correcting threshold and logical failure rate.
We find that the performance of the code depends significantly on the choice of entanglement generation scheme.
arXiv Detail & Related papers (2024-08-05T21:20:03Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - High-rate quantum LDPC codes for long-range-connected neutral atom registers [0.0]
High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are desirable for fault-tolerant quantum computing.
We show how these codes can be integrated in two-dimensional static neutral atom qubit architectures with open boundaries.
arXiv Detail & Related papers (2024-04-19T17:14:03Z) - Fault-tolerant quantum computing with the parity code and noise-biased qubits [0.0]
We present a fault-tolerant universal quantum computing architecture based on a code concatenation of noise-biased qubits and the parity architecture.
The parity architecture can be understood as a LDPC code tailored specifically to obtain any desired logical connectivity from nearest neighbor physical interactions.
arXiv Detail & Related papers (2024-04-17T12:49:31Z) - Low-density parity-check representation of fault-tolerant quantum circuits [5.064729356056529]
In fault-tolerant quantum computing, quantum algorithms are implemented through quantum circuits capable of error correction.
This paper presents a toolkit for designing and analysing fault-tolerant quantum circuits.
arXiv Detail & Related papers (2024-03-15T12:56:38Z) - Comparative study of quantum error correction strategies for the
heavy-hexagonal lattice [44.99833362998488]
Topological quantum error correction is a milestone in the scaling roadmap of quantum computers.
The square-lattice surface code has become the workhorse to address this challenge.
In some platforms, however, the connectivities are kept even lower in order to minimise gate errors.
arXiv Detail & Related papers (2024-02-03T15:28:27Z) - A Spin-Optical Quantum Computing Architecture [0.0]
We introduce an adaptable and modular hybrid architecture designed for fault-tolerant quantum computing.
It combines quantum emitters and linear-optical entangling gates to leverage the strength of both matter-based and photonic-based approaches.
arXiv Detail & Related papers (2023-11-09T18:59:05Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Building a fault-tolerant quantum computer using concatenated cat codes [44.03171880260564]
We present a proposed fault-tolerant quantum computer based on cat codes with outer quantum error-correcting codes.
We numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code.
We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer.
arXiv Detail & Related papers (2020-12-07T23:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.