A quantum processor based on coherent transport of entangled atom arrays
- URL: http://arxiv.org/abs/2112.03923v1
- Date: Tue, 7 Dec 2021 19:00:00 GMT
- Title: A quantum processor based on coherent transport of entangled atom arrays
- Authors: Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr
Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler,
Markus Greiner, Vladan Vuletic, Mikhail D. Lukin
- Abstract summary: We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
- Score: 44.62475518267084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to engineer parallel, programmable operations between desired
qubits within a quantum processor is central for building scalable quantum
information systems. In most state-of-the-art approaches, qubits interact
locally, constrained by the connectivity associated with their fixed spatial
layout. Here, we demonstrate a quantum processor with dynamic, nonlocal
connectivity, in which entangled qubits are coherently transported in a highly
parallel manner across two spatial dimensions, in between layers of single- and
two-qubit operations. Our approach makes use of neutral atom arrays trapped and
transported by optical tweezers; hyperfine states are used for robust quantum
information storage, and excitation into Rydberg states is used for
entanglement generation. We use this architecture to realize programmable
generation of entangled graph states such as cluster states and a 7-qubit
Steane code state. Furthermore, we shuttle entangled ancilla arrays to realize
a surface code with 19 qubits and a toric code state on a torus with 24 qubits.
Finally, we use this architecture to realize a hybrid analog-digital evolution
and employ it for measuring entanglement entropy in quantum simulations,
experimentally observing non-monotonic entanglement dynamics associated with
quantum many-body scars. Realizing a long-standing goal, these results pave the
way toward scalable quantum processing and enable new applications ranging from
simulation to metrology.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Empowering high-dimensional quantum computing by traversing the dual
bosonic ladder [0.12045539806824922]
We present a robust, hardware-efficient, and experimental approach for operating multidimensional solid-state systems using Raman-assisted two-photon interactions.
Our work illuminates the quantum electrodynamics of strongly driven multi-qudit systems and provides the experimental foundation for the future development of high-dimensional quantum applications.
arXiv Detail & Related papers (2023-12-29T18:49:26Z) - Sequential quantum simulation of spin chains with a single circuit QED
device [5.841833052422423]
Quantum simulation of many-body systems in materials science and chemistry are promising application areas for quantum computers.
We show how a single-circuit quantum electrodynamics device can be used to simulate the ground state of a highly-entangled quantum many-body spin chain.
We demonstrate that the large state space of the cavity can be used to replace multiple qubits in a qubit-only architecture, and could therefore simplify the design of quantum processors for materials simulation.
arXiv Detail & Related papers (2023-08-30T18:00:03Z) - State Transfer and Entanglement between Two- and Four-Level Atoms in A
Cavity [0.4724825031148412]
We propose a scheme to transfer quantum information from multiple atomic qubits to a single qudit and vice versa in an optical cavity.
With the qubit-qudit interaction, our scheme can transfer quantum states efficiently and measurement-independently.
arXiv Detail & Related papers (2023-02-22T03:16:54Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Trapped Ions as an Architecture for Quantum Computing [110.83289076967895]
We describe one of the most promising platforms for the construction of a universal quantum computer.
We discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates.
arXiv Detail & Related papers (2022-07-23T22:58:50Z) - A scalable superconducting quantum simulator with long-range
connectivity based on a photonic bandgap metamaterial [0.0]
We present a quantum simulator architecture based on a linear array of qubits locally connected to a superconducting photonic-bandgap metamaterial.
The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement.
We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos.
arXiv Detail & Related papers (2022-06-26T06:51:54Z) - Discrete-time quantum walk approach to high-dimensional quantum state
transfer and quantum routing [6.236377496735381]
We propose a class of quantum-walk architecture networks that admit the efficient routing of high-dimensional quantum states.
Perfect state transfer of an arbitrary unknown qudit state can be achieved between two arbitrary nodes via a one-dimensional lackadaisical discrete-time quantum walk.
arXiv Detail & Related papers (2021-08-10T21:15:41Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.