Regularizing Neural Network Training via Identity-wise Discriminative
Feature Suppression
- URL: http://arxiv.org/abs/2209.14553v2
- Date: Sun, 2 Oct 2022 00:07:43 GMT
- Title: Regularizing Neural Network Training via Identity-wise Discriminative
Feature Suppression
- Authors: Avraham Chapman, Lingqiao Liu
- Abstract summary: When the number of training samples is small, or the class labels are noisy, networks tend to memorize patterns specific to individual instances to minimize the training error.
This paper explores a remedy by suppressing the network's tendency to rely on instance-specific patterns for empirical error minimisation.
- Score: 20.89979858757123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well-known that a deep neural network has a strong fitting capability
and can easily achieve a low training error even with randomly assigned class
labels. When the number of training samples is small, or the class labels are
noisy, networks tend to memorize patterns specific to individual instances to
minimize the training error. This leads to the issue of overfitting and poor
generalisation performance. This paper explores a remedy by suppressing the
network's tendency to rely on instance-specific patterns for empirical error
minimisation. The proposed method is based on an adversarial training
framework. It suppresses features that can be utilized to identify individual
instances among samples within each class. This leads to classifiers only using
features that are both discriminative across classes and common within each
class. We call our method Adversarial Suppression of Identity Features (ASIF),
and demonstrate the usefulness of this technique in boosting generalisation
accuracy when faced with small datasets or noisy labels. Our source code is
available.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes.
We show that the few-shot error of the learned feature map on new classes is small in case of class-feature-variability collapse.
arXiv Detail & Related papers (2022-12-23T18:46:05Z) - Learning from Data with Noisy Labels Using Temporal Self-Ensemble [11.245833546360386]
Deep neural networks (DNNs) have an enormous capacity to memorize noisy labels.
Current state-of-the-art methods present a co-training scheme that trains dual networks using samples associated with small losses.
We propose a simple yet effective robust training scheme that operates by training only a single network.
arXiv Detail & Related papers (2022-07-21T08:16:31Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2021-11-19T10:15:22Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Semi-Supervised Learning using Siamese Networks [3.492636597449942]
This work explores a new training method for semi-supervised learning that is based on similarity function learning using a Siamese network.
Confident predictions of unlabeled instances are used as true labels for retraining the Siamese network.
For improving unlabeled predictions, local learning with global consistency is also evaluated.
arXiv Detail & Related papers (2021-09-02T09:06:35Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.