Strong to ultra-strong coherent coupling measurements in a YIG/cavity
system at room temperature
- URL: http://arxiv.org/abs/2209.14643v2
- Date: Wed, 26 Apr 2023 15:54:40 GMT
- Title: Strong to ultra-strong coherent coupling measurements in a YIG/cavity
system at room temperature
- Authors: Guillaume Bourcin, Jeremy Bourhill, Vincent Vlaminck, Vincent Castel
- Abstract summary: We present an experimental study of the strong to ultra-strong coupling regimes at room temperature in frequency-reconfigurable 3D re-entrant cavities coupled with a YIG slab.
The observed coupling rate, defined as the ratio of the coupling strength to the cavity frequency of interest, ranges from 12% to 59%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an experimental study of the strong to ultra-strong coupling
regimes at room temperature in frequency-reconfigurable 3D re-entrant cavities
coupled with a YIG slab. The observed coupling rate, defined as the ratio of
the coupling strength to the cavity frequency of interest, ranges from 12% to
59%. We show that certain considerations must be taken into account when
analyzing the polaritonic branches of a cavity spintronic device where the RF
field is highly focused in the magnetic material. Our observations are in
excellent agreement with electromagnetic finite element simulations in the
frequency domain.
Related papers
- Controlling magnon-photon coupling in a planar geometry [0.0]
We study magnon-photon coupling using a high-quality factor split-ring resonator.
We find that the coupling is stronger for spheres with a larger diameter as predicted by theory.
arXiv Detail & Related papers (2024-02-05T15:01:57Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Fast coherent control of an NV- spin ensemble using a KTaO3 dielectric
resonator at cryogenic temperatures [0.0]
Microwave delivery to samples in a cryogenic environment can pose experimental challenges such as restricting optical access, space constraints and heat generation.
Here we show fast and coherent control of a negatively charged nitrogen vacancy spin ensemble by taking advantage of the high permittivity of a KTaO3 dielectric resonator at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-14T12:05:22Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Spatially-resolved decoherence of donor spins in silicon strained by a
metallic electrode [0.0]
We report a comprehensive study of the coherence of near-surface bismuth donor spins in 28-silicon at millikelvin temperatures.
By measuring magnetic-field-insensitive clock transitions we separate magnetic noise caused by surface spins from charge noise.
The interplay of these decoherence mechanisms for such near-surface electron spins is critical for their application in quantum technologies.
arXiv Detail & Related papers (2021-01-12T10:32:01Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.