Overcoming temperature limits in the optical cooling of solids using light-dressed states
- URL: http://arxiv.org/abs/2209.14693v3
- Date: Fri, 5 Apr 2024 15:17:08 GMT
- Title: Overcoming temperature limits in the optical cooling of solids using light-dressed states
- Authors: Luisa Toledo Tude, Conor N. Murphy, Paul R. Eastham,
- Abstract summary: We propose a method that could overcome this using defects, such as diamond color centers.
It exploits the dressed states formed in strong fields which extend the set of phonon transitions and have tunable energies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Laser cooling of solids currently has a temperature floor of 50 - 100 K. We propose a method that could overcome this using defects, such as diamond color centers, with narrow electronic manifolds and bright optical transitions. It exploits the dressed states formed in strong fields which extend the set of phonon transitions and have tunable energies. This allows an enhancement of the cooling power and diminishes the effect of inhomogeneous broadening. We demonstrate these effects theoretically for the silicon-vacancy and the germanium-vacancy, and discuss the role of background absorption, phonon-assisted emission, and non-radiative decay.
Related papers
- Modeling of a continuous superradiant laser on the sub-mHz $^1$S$_0\,\rightarrow\,^3$P$_0$ transition in neutral strontium-88 [4.318157997343946]
Superradiant emission on a mHz linewidth clock transition has been shown, but true continuous operation has turned out to be extremely challenging.
We discuss the design of a machine that could overcome this problem by combining a high-flux continuous beam of ultra cold strontium atoms with a bowtie cavity.
We estimate a laser linewidth of less than 100 mHz, limited by atom number fluctuations, and resulting in an output power of hundreds of fW.
arXiv Detail & Related papers (2024-09-10T15:10:16Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Purcell enhanced optical refrigeration [0.9401004127785267]
A minimum temperature of 87 K has been demonstrated with rare-earth ion doped crystals using optical refrigeration.
In this work, we introduce Purcell enhanced optical refrigeration method to circumvent this limitation.
The proposed method is applicable to other rare-earth ion doped materials and semiconductors, and will have applications in creating superconducting and other quantum devices with solid-state cooling.
arXiv Detail & Related papers (2024-04-29T23:00:27Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Thermal Purcell effect and cavity-induced renormalization of dissipations [0.0]
I derive a simple expression for the radiative heat power absorbed by the material.
I investigate how it changes in the presence of a cavity and show that it is enhanced dramatically for appropriate cavity geometries.
arXiv Detail & Related papers (2023-10-20T18:00:03Z) - An anti-maser for quantum-limited cooling of a microwave cavity [58.720142291102135]
We experimentally demonstrate how to generate a state in condensed matter at moderate cryogenic temperatures.
This state is then used to efficiently remove microwave photons from a cavity.
Such an "anti-maser" device could be extremely beneficial for applications that would normally require cooling to millikelvin temperatures.
arXiv Detail & Related papers (2023-07-24T11:12:29Z) - Unraveling the temperature dynamics and hot electron generation in
tunable gap-plasmon metasurface absorbers [0.0]
Localized plasmons formed in ultrathin metallic nanogaps can lead to robust absorption of incident light.
Plasmon metasurfaces based on this effect can efficiently generate energetic charge carriers, also known as hot electrons.
arXiv Detail & Related papers (2022-03-29T20:51:14Z) - Connecting steady-states of driven-dissipative photonic lattices with
spontaneous collective emission phenomena [91.3755431537592]
We use intuition to predict the formation of non-trivial photonic steady-states in one and two dimensions.
We show that subradiant emitter configurations are linked to the emergence of steady-state light-localization in the driven-dissipative setting.
These results shed light on the recently reported optically-defined cavities in polaritonic lattices.
arXiv Detail & Related papers (2021-12-27T23:58:42Z) - Quantum control of solid-state qubits for thermodynamic applications [0.0]
We consider a single emitter of excitons driven by time-dependent laser fields.
We show that the form of the driving field can be tailored to produce different thermodynamic processes.
We discuss these effects from the perspective of quantum thermodynamics and outline the possibility of using them for optical cooling of solids to low temperatures.
arXiv Detail & Related papers (2021-03-24T11:17:24Z) - Quantum thermodynamics of coronal heating [77.34726150561087]
convection in the stellar photosphere generates plasma waves by an irreversible process akin to Zeldovich superradiance and sonic booms.
Energy is mostly carried by megahertz Alfven waves that scatter elastically until they reach a height at which they can dissipate via mode conversion.
arXiv Detail & Related papers (2021-03-15T22:27:31Z) - Nitrogen-vacancy defect emission spectra in the vicinity of an
adjustable silver mirror [62.997667081978825]
Optical emitters of quantum radiation in the solid state are important building blocks for emerging technologies.
We experimentally study the emission spectrum of an ensemble of nitrogen-vacancy defects implanted around 8nm below the planar diamond surface.
arXiv Detail & Related papers (2020-03-31T10:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.