GDIP: Gated Differentiable Image Processing for Object-Detection in
Adverse Conditions
- URL: http://arxiv.org/abs/2209.14922v1
- Date: Thu, 29 Sep 2022 16:43:13 GMT
- Title: GDIP: Gated Differentiable Image Processing for Object-Detection in
Adverse Conditions
- Authors: Sanket Kalwar, Dhruv Patel, Aakash Aanegola, Krishna Reddy Konda,
Sourav Garg, K Madhava Krishna
- Abstract summary: We present a Gated Differentiable Image Processing (GDIP) block, a domain-agnostic network architecture.
Our proposed GDIP block learns to enhance images directly through the downstream object detection loss.
We demonstrate significant improvement in detection performance over several state-of-the-art methods.
- Score: 15.327704761260131
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting objects under adverse weather and lighting conditions is crucial
for the safe and continuous operation of an autonomous vehicle, and remains an
unsolved problem. We present a Gated Differentiable Image Processing (GDIP)
block, a domain-agnostic network architecture, which can be plugged into
existing object detection networks (e.g., Yolo) and trained end-to-end with
adverse condition images such as those captured under fog and low lighting. Our
proposed GDIP block learns to enhance images directly through the downstream
object detection loss. This is achieved by learning parameters of multiple
image pre-processing (IP) techniques that operate concurrently, with their
outputs combined using weights learned through a novel gating mechanism. We
further improve GDIP through a multi-stage guidance procedure for progressive
image enhancement. Finally, trading off accuracy for speed, we propose a
variant of GDIP that can be used as a regularizer for training Yolo, which
eliminates the need for GDIP-based image enhancement during inference,
resulting in higher throughput and plausible real-world deployment. We
demonstrate significant improvement in detection performance over several
state-of-the-art methods through quantitative and qualitative studies on
synthetic datasets such as PascalVOC, and real-world foggy (RTTS) and
low-lighting (ExDark) datasets.
Related papers
- Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
arXiv Detail & Related papers (2024-11-17T09:39:50Z) - DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
We construct a DA-HFNet forged image dataset guided by text or image-assisted GAN and Diffusion model.
Our goal is to utilize a hierarchical progressive network to capture forged artifacts at different scales for detection and localization.
arXiv Detail & Related papers (2024-06-03T16:13:33Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
Diffusion models (DMs) have revolutionized image generation, producing high-quality images with applications spanning various fields.
Their ability to create hyper-realistic images poses significant challenges in distinguishing between real and synthetic content.
This work introduces a robust detection framework that integrates image and text features extracted by CLIP model with a Multilayer Perceptron (MLP) classifier.
arXiv Detail & Related papers (2024-04-19T14:30:41Z) - FriendNet: Detection-Friendly Dehazing Network [24.372610892854283]
We propose an effective architecture that bridges image dehazing and object detection together via guidance information and task-driven learning.
FriendNet aims to deliver both high-quality perception and high detection capacity.
arXiv Detail & Related papers (2024-03-07T12:19:04Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - Multitask AET with Orthogonal Tangent Regularity for Dark Object
Detection [84.52197307286681]
We propose a novel multitask auto encoding transformation (MAET) model to enhance object detection in a dark environment.
In a self-supervision manner, the MAET learns the intrinsic visual structure by encoding and decoding the realistic illumination-degrading transformation.
We have achieved the state-of-the-art performance using synthetic and real-world datasets.
arXiv Detail & Related papers (2022-05-06T16:27:14Z) - Lightweight HDR Camera ISP for Robust Perception in Dynamic Illumination
Conditions via Fourier Adversarial Networks [35.532434169432776]
We propose a lightweight two-stage image enhancement algorithm sequentially balancing illumination and noise removal.
We also propose a Fourier spectrum-based adversarial framework (AFNet) for consistent image enhancement under varying illumination conditions.
Based on quantitative and qualitative evaluations, we also examine the practicality and effects of image enhancement techniques on the performance of common perception tasks.
arXiv Detail & Related papers (2022-04-04T18:48:51Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Removing Diffraction Image Artifacts in Under-Display Camera via Dynamic
Skip Connection Network [80.67717076541956]
Under-Display Camera (UDC) systems provide a true bezel-less and notch-free viewing experience on smartphones.
In a typical UDC system, the pixel array attenuates and diffracts the incident light on the camera, resulting in significant image quality degradation.
In this work, we aim to analyze and tackle the aforementioned degradation problems.
arXiv Detail & Related papers (2021-04-19T18:41:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.