Time Step Generating: A Universal Synthesized Deepfake Image Detector
- URL: http://arxiv.org/abs/2411.11016v2
- Date: Wed, 20 Nov 2024 00:30:01 GMT
- Title: Time Step Generating: A Universal Synthesized Deepfake Image Detector
- Authors: Ziyue Zeng, Haoyuan Liu, Dingjie Peng, Luoxu Jing, Hiroshi Watanabe,
- Abstract summary: We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
- Score: 0.4488895231267077
- License:
- Abstract: Currently, high-fidelity text-to-image models are developed in an accelerating pace. Among them, Diffusion Models have led to a remarkable improvement in the quality of image generation, making it vary challenging to distinguish between real and synthesized images. It simultaneously raises serious concerns regarding privacy and security. Some methods are proposed to distinguish the diffusion model generated images through reconstructing. However, the inversion and denoising processes are time-consuming and heavily reliant on the pre-trained generative model. Consequently, if the pre-trained generative model meet the problem of out-of-domain, the detection performance declines. To address this issue, we propose a universal synthetic image detector Time Step Generating (TSG), which does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms. Our method utilizes a pre-trained diffusion model's network as a feature extractor to capture fine-grained details, focusing on the subtle differences between real and synthetic images. By controlling the time step t of the network input, we can effectively extract these distinguishing detail features. Then, those features can be passed through a classifier (i.e. Resnet), which efficiently detects whether an image is synthetic or real. We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
Related papers
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
Diffusion models (DMs) have revolutionized image generation, producing high-quality images with applications spanning various fields.
Their ability to create hyper-realistic images poses significant challenges in distinguishing between real and synthetic content.
This work introduces a robust detection framework that integrates image and text features extracted by CLIP model with a Multilayer Perceptron (MLP) classifier.
arXiv Detail & Related papers (2024-04-19T14:30:41Z) - Paired Diffusion: Generation of related, synthetic PET-CT-Segmentation scans using Linked Denoising Diffusion Probabilistic Models [0.0]
This research introduces a novel architecture that is able to generate multiple, related PET-CT-tumour mask pairs using paired networks and conditional encoders.
Our approach includes innovative, time step-controlled mechanisms and a noise-seeding' strategy to improve DDPM sampling consistency.
arXiv Detail & Related papers (2024-03-26T14:21:49Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Randomize to Generalize: Domain Randomization for Runway FOD Detection [1.4249472316161877]
Tiny Object Detection is challenging due to small size, low resolution, occlusion, background clutter, lighting conditions and small object-to-image ratio.
We propose a novel two-stage methodology Synthetic Image Augmentation (SRIA) to enhance generalization capabilities of models encountering 2D datasets.
We report that detection accuracy improved from an initial 41% to 92% for OOD test set.
arXiv Detail & Related papers (2023-09-23T05:02:31Z) - Generalizable Synthetic Image Detection via Language-guided Contrastive
Learning [22.4158195581231]
malevolent use of synthetic images, such as the dissemination of fake news or the creation of fake profiles, raises significant concerns regarding the authenticity of images.
We propose a simple yet very effective synthetic image detection method via a language-guided contrastive learning and a new formulation of the detection problem.
It is shown that our proposed LanguAge-guided SynThEsis Detection (LASTED) model achieves much improved generalizability to unseen image generation models.
arXiv Detail & Related papers (2023-05-23T08:13:27Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
We develop a new detection method for images that are indistinguishable from real ones.
Our method can detect images from a known generative model and enable us to establish relationships between fine-tuned generative models.
Our approach achieves comparable performance to state-of-the-art pre-trained detection methods on images generated by Stable Diffusion and Midversa.
arXiv Detail & Related papers (2023-03-19T20:31:38Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.