Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments
- URL: http://arxiv.org/abs/2209.15090v3
- Date: Tue, 13 Jun 2023 17:38:20 GMT
- Title: Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments
- Authors: Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin,
Zhuoran Yang, Zhaoran Wang, Chao Huang, Qi Zhu
- Abstract summary: We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
- Score: 84.3830478851369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is quite challenging to ensure the safety of reinforcement learning (RL)
agents in an unknown and stochastic environment under hard constraints that
require the system state not to reach certain specified unsafe regions. Many
popular safe RL methods such as those based on the Constrained Markov Decision
Process (CMDP) paradigm formulate safety violations in a cost function and try
to constrain the expectation of cumulative cost under a threshold. However, it
is often difficult to effectively capture and enforce hard reachability-based
safety constraints indirectly with such constraints on safety violation costs.
In this work, we leverage the notion of barrier function to explicitly encode
the hard safety constraints, and given that the environment is unknown, relax
them to our design of \emph{generative-model-based soft barrier functions}.
Based on such soft barriers, we propose a safe RL approach that can jointly
learn the environment and optimize the control policy, while effectively
avoiding unsafe regions with safety probability optimization. Experiments on a
set of examples demonstrate that our approach can effectively enforce hard
safety constraints and significantly outperform CMDP-based baseline methods in
system safe rate measured via simulations.
Related papers
- Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
"Shielding" is a popular technique to enforce safety inReinforcement Learning (RL)
We propose a new permissibility-based framework to deal with safety and shield construction.
arXiv Detail & Related papers (2024-05-29T18:00:21Z) - Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical
Systems [15.863561935347692]
We develop provably safe and convergent reinforcement learning algorithms for control of nonlinear dynamical systems.
Recent advances at the intersection of control and RL follow a two-stage, safety filter approach to enforcing hard safety constraints.
We develop a single-stage, sampling-based approach to hard constraint satisfaction that learns RL controllers enjoying classical convergence guarantees.
arXiv Detail & Related papers (2024-03-06T19:39:20Z) - Concurrent Learning of Policy and Unknown Safety Constraints in Reinforcement Learning [4.14360329494344]
Reinforcement learning (RL) has revolutionized decision-making across a wide range of domains over the past few decades.
Yet, deploying RL policies in real-world scenarios presents the crucial challenge of ensuring safety.
Traditional safe RL approaches have predominantly focused on incorporating predefined safety constraints into the policy learning process.
We propose a novel approach that concurrently learns a safe RL control policy and identifies the unknown safety constraint parameters of a given environment.
arXiv Detail & Related papers (2024-02-24T20:01:15Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
We develop a control-theoretic approach for certifying state safety constraints for nominal policies learned via standard reinforcement learning techniques.
We provide formal safety guarantees, and empirically demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-04T11:43:23Z) - Lyapunov-based uncertainty-aware safe reinforcement learning [0.0]
InReinforcement learning (RL) has shown a promising performance in learning optimal policies for a variety of sequential decision-making tasks.
In many real-world RL problems, besides optimizing the main objectives, the agent is expected to satisfy a certain level of safety.
We propose a Lyapunov-based uncertainty-aware safe RL model to address these limitations.
arXiv Detail & Related papers (2021-07-29T13:08:15Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z) - Context-Aware Safe Reinforcement Learning for Non-Stationary
Environments [24.75527261989899]
Safety is a critical concern when deploying reinforcement learning agents for realistic tasks.
We propose the context-aware safe reinforcement learning (CASRL) method to realize safe adaptation in non-stationary environments.
Results show that the proposed algorithm significantly outperforms existing baselines in terms of safety and robustness.
arXiv Detail & Related papers (2021-01-02T23:52:22Z) - Constrained Markov Decision Processes via Backward Value Functions [43.649330976089004]
We model the problem of learning with constraints as a Constrained Markov Decision Process.
A key contribution of our approach is to translate cumulative cost constraints into state-based constraints.
We provide theoretical guarantees under which the agent converges while ensuring safety over the course of training.
arXiv Detail & Related papers (2020-08-26T20:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.