Latent Safety-Constrained Policy Approach for Safe Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2412.08794v1
- Date: Wed, 11 Dec 2024 22:00:07 GMT
- Title: Latent Safety-Constrained Policy Approach for Safe Offline Reinforcement Learning
- Authors: Prajwal Koirala, Zhanhong Jiang, Soumik Sarkar, Cody Fleming,
- Abstract summary: In safe offline reinforcement learning (RL), the objective is to develop a policy that maximizes cumulative rewards while strictly adhering to safety constraints.
We address these issues with a novel approach that begins by learning a conservatively safe policy through the use of Conditional Variational Autoencoders.
We frame this as a Constrained Reward-Return Maximization problem, wherein the policy aims to optimize rewards while complying with the inferred latent safety constraints.
- Score: 7.888219789657414
- License:
- Abstract: In safe offline reinforcement learning (RL), the objective is to develop a policy that maximizes cumulative rewards while strictly adhering to safety constraints, utilizing only offline data. Traditional methods often face difficulties in balancing these constraints, leading to either diminished performance or increased safety risks. We address these issues with a novel approach that begins by learning a conservatively safe policy through the use of Conditional Variational Autoencoders, which model the latent safety constraints. Subsequently, we frame this as a Constrained Reward-Return Maximization problem, wherein the policy aims to optimize rewards while complying with the inferred latent safety constraints. This is achieved by training an encoder with a reward-Advantage Weighted Regression objective within the latent constraint space. Our methodology is supported by theoretical analysis, including bounds on policy performance and sample complexity. Extensive empirical evaluation on benchmark datasets, including challenging autonomous driving scenarios, demonstrates that our approach not only maintains safety compliance but also excels in cumulative reward optimization, surpassing existing methods. Additional visualizations provide further insights into the effectiveness and underlying mechanisms of our approach.
Related papers
- FAWAC: Feasibility Informed Advantage Weighted Regression for Persistent Safety in Offline Reinforcement Learning [7.888219789657414]
Safe offline reinforcement learning aims to learn policies that maximize cumulative rewards while adhering to safety constraints.
Key challenge is balancing safety and performance, particularly when the policy encounters out-of-distribution states and actions.
We introduce Feasibility Informed Advantage Weighted Actor-Critic (FAWAC), a method that prioritizes persistent safety in constrained Markov decision processes.
arXiv Detail & Related papers (2024-12-12T02:28:50Z) - Concurrent Learning of Policy and Unknown Safety Constraints in Reinforcement Learning [4.14360329494344]
Reinforcement learning (RL) has revolutionized decision-making across a wide range of domains over the past few decades.
Yet, deploying RL policies in real-world scenarios presents the crucial challenge of ensuring safety.
Traditional safe RL approaches have predominantly focused on incorporating predefined safety constraints into the policy learning process.
We propose a novel approach that concurrently learns a safe RL control policy and identifies the unknown safety constraint parameters of a given environment.
arXiv Detail & Related papers (2024-02-24T20:01:15Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
We develop a control-theoretic approach for certifying state safety constraints for nominal policies learned via standard reinforcement learning techniques.
We provide formal safety guarantees, and empirically demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-04T11:43:23Z) - Constrained Policy Optimization via Bayesian World Models [79.0077602277004]
LAMBDA is a model-based approach for policy optimization in safety critical tasks modeled via constrained Markov decision processes.
We demonstrate LAMBDA's state of the art performance on the Safety-Gym benchmark suite in terms of sample efficiency and constraint violation.
arXiv Detail & Related papers (2022-01-24T17:02:22Z) - Constrained Markov Decision Processes via Backward Value Functions [43.649330976089004]
We model the problem of learning with constraints as a Constrained Markov Decision Process.
A key contribution of our approach is to translate cumulative cost constraints into state-based constraints.
We provide theoretical guarantees under which the agent converges while ensuring safety over the course of training.
arXiv Detail & Related papers (2020-08-26T20:56:16Z) - Verifiably Safe Exploration for End-to-End Reinforcement Learning [17.401496872603943]
This paper contributes a first approach toward enforcing formal safety constraints on end-to-end policies with visual inputs.
It is evaluated on a novel benchmark that emphasizes the challenge of safely exploring in the presence of hard constraints.
arXiv Detail & Related papers (2020-07-02T16:12:20Z) - Cautious Reinforcement Learning with Logical Constraints [78.96597639789279]
An adaptive safe padding forces Reinforcement Learning (RL) to synthesise optimal control policies while ensuring safety during the learning process.
Theoretical guarantees are available on the optimality of the synthesised policies and on the convergence of the learning algorithm.
arXiv Detail & Related papers (2020-02-26T00:01:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.