Structured Optimal Variational Inference for Dynamic Latent Space Models
- URL: http://arxiv.org/abs/2209.15117v2
- Date: Tue, 15 Oct 2024 15:09:41 GMT
- Title: Structured Optimal Variational Inference for Dynamic Latent Space Models
- Authors: Peng Zhao, Anirban Bhattacharya, Debdeep Pati, Bani K. Mallick,
- Abstract summary: We consider a latent space model for dynamic networks, where our objective is to estimate the pairwise inner products plus the intercept of the latent positions.
To balance posterior inference and computational scalability, we consider a structured mean-field variational inference framework.
- Score: 16.531262817315696
- License:
- Abstract: We consider a latent space model for dynamic networks, where our objective is to estimate the pairwise inner products plus the intercept of the latent positions. To balance posterior inference and computational scalability, we consider a structured mean-field variational inference framework, where the time-dependent properties of the dynamic networks are exploited to facilitate computation and inference. Additionally, an easy-to-implement block coordinate ascent algorithm is developed with message-passing type updates in each block, whereas the complexity per iteration is linear with the number of nodes and time points. To certify the optimality, we demonstrate that the variational risk of the proposed variational inference approach attains the minimax optimal rate with only a logarithm factor under certain conditions. To this end, we first derive the minimax lower bound, which might be of independent interest. In addition, we show that the posterior under commonly adopted Gaussian random walk priors can achieve the minimax lower bound with only a logarithm factor. To the best of our knowledge, this is the first such a throughout theoretical analysis of Bayesian dynamic latent space models. Simulations and real data analysis demonstrate the efficacy of our methodology and the efficiency of our algorithm.
Related papers
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)
The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Data-driven rules for multidimensional reflection problems [1.0742675209112622]
We study a multivariate singular control problem for reversible diffusions with controls of reflection type.
For given diffusion dynamics, assuming the optimal domain to be strongly star-shaped, we propose a gradient descent algorithm based on polytope approximations to numerically determine a cost-minimizing domain.
Finally, we investigate data-driven solutions when the diffusion dynamics are unknown to the controller.
arXiv Detail & Related papers (2023-11-11T18:36:17Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
We propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms.
We demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
arXiv Detail & Related papers (2020-08-19T19:11:25Z) - Adaptive Discretization for Model-Based Reinforcement Learning [10.21634042036049]
We introduce the technique of adaptive discretization to design an efficient model-based episodic reinforcement learning algorithm.
Our algorithm is based on optimistic one-step value iteration extended to maintain an adaptive discretization of the space.
arXiv Detail & Related papers (2020-07-01T19:36:46Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Consensus-Based Optimization on the Sphere: Convergence to Global
Minimizers and Machine Learning [7.998311072988401]
We investigate the implementation of a new Kuramoto-Vicsek-type model for global optimization of non functions on the sphere.
We present several numerical experiments, which show that the algorithm proposed in the present paper scales well with the dimension and is extremely versatile.
arXiv Detail & Related papers (2020-01-31T18:23:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.