Adaptive Discretization for Model-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2007.00717v2
- Date: Fri, 23 Oct 2020 13:16:38 GMT
- Title: Adaptive Discretization for Model-Based Reinforcement Learning
- Authors: Sean R. Sinclair, Tianyu Wang, Gauri Jain, Siddhartha Banerjee,
Christina Lee Yu
- Abstract summary: We introduce the technique of adaptive discretization to design an efficient model-based episodic reinforcement learning algorithm.
Our algorithm is based on optimistic one-step value iteration extended to maintain an adaptive discretization of the space.
- Score: 10.21634042036049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the technique of adaptive discretization to design an efficient
model-based episodic reinforcement learning algorithm in large (potentially
continuous) state-action spaces. Our algorithm is based on optimistic one-step
value iteration extended to maintain an adaptive discretization of the space.
From a theoretical perspective we provide worst-case regret bounds for our
algorithm which are competitive compared to the state-of-the-art model-based
algorithms. Moreover, our bounds are obtained via a modular proof technique
which can potentially extend to incorporate additional structure on the
problem.
From an implementation standpoint, our algorithm has much lower storage and
computational requirements due to maintaining a more efficient partition of the
state and action spaces. We illustrate this via experiments on several
canonical control problems, which shows that our algorithm empirically performs
significantly better than fixed discretization in terms of both faster
convergence and lower memory usage. Interestingly, we observe empirically that
while fixed-discretization model-based algorithms vastly outperform their
model-free counterparts, the two achieve comparable performance with adaptive
discretization.
Related papers
- Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
Black-box optimization problems are common in many real-world applications.
These problems require optimization through input-output interactions without access to internal workings.
Two widely used gradient-free optimization techniques are employed to address such challenges.
This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods.
arXiv Detail & Related papers (2024-03-21T13:59:19Z) - Provably Efficient Learning in Partially Observable Contextual Bandit [4.910658441596583]
We show how causal bounds can be applied to improving classical bandit algorithms.
This research has the potential to enhance the performance of contextual bandit agents in real-world applications.
arXiv Detail & Related papers (2023-08-07T13:24:50Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Structured Optimal Variational Inference for Dynamic Latent Space Models [16.531262817315696]
We consider a latent space model for dynamic networks, where our objective is to estimate the pairwise inner products plus the intercept of the latent positions.
To balance posterior inference and computational scalability, we consider a structured mean-field variational inference framework.
arXiv Detail & Related papers (2022-09-29T22:10:42Z) - Annealing Optimization for Progressive Learning with Stochastic
Approximation [0.0]
We introduce a learning model designed to meet the needs of applications in which computational resources are limited.
We develop an online prototype-based learning algorithm that is formulated as an online-free gradient approximation algorithm.
The learning model can be viewed as an interpretable and progressively growing competitive neural network model to be used for supervised, unsupervised, and reinforcement learning.
arXiv Detail & Related papers (2022-09-06T21:31:01Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Joint Continuous and Discrete Model Selection via Submodularity [1.332560004325655]
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem.
In many scenarios, however, numerically meaningful structure is specified in some discrete space leading to difficult non optimization problems.
We show how simple continuous or discrete constraints can also be handled for certain problem classes, motivated by robust optimization.
arXiv Detail & Related papers (2021-02-17T21:14:47Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.