Quantum Fourier Addition, Simplified to Toffoli Addition
- URL: http://arxiv.org/abs/2209.15193v1
- Date: Fri, 30 Sep 2022 02:36:42 GMT
- Title: Quantum Fourier Addition, Simplified to Toffoli Addition
- Authors: Alexandru Paler
- Abstract summary: We present the first systematic translation of the QFT-addition circuit into a Toffoli-based adder.
Instead of using approximate decompositions of the gates from the QFT circuit, it is more efficient to merge gates.
- Score: 92.18777020401484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum addition circuits are considered being of two types: 1)
Toffolli-adder circuits which use only classical reversible gates (CNOT and
Toffoli), and 2) QFT-adder circuits based on the quantum Fourier
transformation. We present the first systematic translation of the QFT-addition
circuit into a Toffoli-based adder. This result shows that QFT-addition has
fundamentally the same fault-tolerance cost (e.g. T-count) as the most
cost-efficient Toffoli-adder: instead of using approximate decompositions of
the gates from the QFT circuit, it is more efficient to merge gates. In order
to achieve this, we formulated novel circuit identities for multi-controlled
gates and apply the identities algorithmically. The employed techniques can be
used to automate quantum circuit optimisation heuristics.
Related papers
- Multi-controlled single-qubit unitary gates based on the quantum Fourier transform [0.0]
Multi-controlled (MC) unitary (U) gates are widely employed in quantum algorithms and circuits.
Few state-of-the-art decompositions of MCU gates use non-elementary $C-R_x$ and $C-U1/2m-1$ gates.
Our approach is based on two generalizations of the multi-controlled X (MCX) gate.
arXiv Detail & Related papers (2024-08-01T21:56:02Z) - Implementing multi-controlled X gates using the quantum Fourier transform [0.0]
We show how a quantum arithmetic-based approach can be efficiently used to implement many complex quantum gates.
We show how the depth of the circuit can be significantly reduced using only a few ancilla qubits.
arXiv Detail & Related papers (2024-07-25T13:22:00Z) - Variational Quantum Algorithm based circuit that implements the Toffoli
gate with multi inputs [0.0]
This study seeks a circuit diagram for a multi-inputs Toffoli gate including only single qubit gates and CNOTs.
We have developed two variational quantum algorithms that can be used to implement a multi-inputs Toffoli gate.
arXiv Detail & Related papers (2023-05-30T05:10:08Z) - Shallow unitary decompositions of quantum Fredkin and Toffoli gates for
connectivity-aware equivalent circuit averaging [0.0]
Controlled-SWAP and controlled-controlled-NOT gates are at the heart of the original proposal of reversible classical computation.
We provide several logically equivalent circuits for the Toffoli and Fredkin gates under all-to-all and linear qubit connectivity.
We also demonstrate the remarkable effectiveness of the obtained decompositions at mitigating coherent errors on near-term quantum computers.
arXiv Detail & Related papers (2023-05-29T14:46:19Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - T-count optimization of approximate quantum Fourier transform [0.0]
We present a new n-qubit QFT circuit approximated to error O(varepsilon) using Toffoli gates and quantum adders.
arXiv Detail & Related papers (2022-03-15T09:13:51Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - On the realistic worst case analysis of quantum arithmetic circuits [69.43216268165402]
We show that commonly held intuitions when designing quantum circuits can be misleading.
We show that reducing the T-count can increase the total depth.
We illustrate our method on addition and multiplication circuits using ripple-carry.
arXiv Detail & Related papers (2021-01-12T21:36:16Z) - Machine Learning Optimization of Quantum Circuit Layouts [63.55764634492974]
We introduce a quantum circuit mapping, QXX, and its machine learning version, QXX-MLP.
The latter infers automatically the optimal QXX parameter values such that the layed out circuit has a reduced depth.
We present empiric evidence for the feasibility of learning the layout method using approximation.
arXiv Detail & Related papers (2020-07-29T05:26:19Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.