Implementing multi-controlled X gates using the quantum Fourier transform
- URL: http://arxiv.org/abs/2407.18024v1
- Date: Thu, 25 Jul 2024 13:22:00 GMT
- Title: Implementing multi-controlled X gates using the quantum Fourier transform
- Authors: Vladimir V. Arsoski,
- Abstract summary: We show how a quantum arithmetic-based approach can be efficiently used to implement many complex quantum gates.
We show how the depth of the circuit can be significantly reduced using only a few ancilla qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing has the potential to solve many complex algorithms in the domains of optimization, arithmetics, structural search, financial risk analysis, machine learning, image processing, and others. Quantum circuits built to implement these algorithms usually require multi-controlled gates as fundamental building blocks, where the multi-controlled Toffoli stands out as the primary example. For implementation in quantum hardware, these gates should be decomposed into many elementary gates, which results in a large depth of the final quantum circuit. However, even moderately deep quantum circuits have low fidelity due to decoherence effects and, thus, may return an almost perfectly uniform distribution of the output results. This paper proposes a different approach for efficient cost multi-controlled gates implementation using the quantum Fourier transform. We show how the depth of the circuit can be significantly reduced using only a few ancilla qubits, making our approach viable for application to noisy intermediate-scale quantum computers. This quantum arithmetic-based approach can be efficiently used to implement many complex quantum gates.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Hardware-Conscious Optimization of the Quantum Toffoli Gate [11.897854272643634]
This manuscript expands the analytical and numerical approaches for optimizing quantum circuits at this abstraction level.
We present a procedure for combining the strengths of analytical native gate-level optimization with numerical optimization.
Our optimized Toffoli gate implementation demonstrates an $18%$ reduction in infidelity compared with the canonical implementation.
arXiv Detail & Related papers (2022-09-06T17:29:22Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Scalable algorithm simplification using quantum AND logic [18.750481652943005]
We implement a quantum version of AND logic that can reduce the cost, enabling the execution of key quantum circuits.
On a high-scalability superconducting quantum processor, we demonstrate low-depth synthesis of high-fidelity generalized Toffoli gates with up to 8 qubits and Grover's search algorithm in a search space of up to 64 entries.
arXiv Detail & Related papers (2021-12-30T04:25:39Z) - QuantumCircuitOpt: An Open-source Framework for Provably Optimal Quantum
Circuit Design [0.0]
We propose QuantumCircuitOpt, a novel open-source framework which implements mathematical optimization formulations and algorithms for decomposing arbitrary unitary gates into a sequence of hardware-native gates.
We show that QCOpt can find up to 57% reduction in the number of necessary gates on circuits with up to four qubits, and in run times less than a few minutes on commodity computing hardware.
We also show how the QCOpt package can be adapted to various built-in types of native gate sets, based on different hardware platforms like those produced by IBM, Rigetti and Google.
arXiv Detail & Related papers (2021-11-23T06:45:40Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Topological Quantum Compiling with Reinforcement Learning [7.741584909637626]
We introduce an efficient algorithm that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set.
Our algorithm may carry over to other challenging quantum discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum physics.
arXiv Detail & Related papers (2020-04-09T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.